1
|
Del Campo CMZM, Nicolson GL, Sfera A. Neurolipidomics in schizophrenia: A not so well-oiled machine. Neuropharmacology 2024; 260:110117. [PMID: 39153730 DOI: 10.1016/j.neuropharm.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA
| | - Adonis Sfera
- Patton State Hospital, Loma Linda University, Department of Psychiatry, University of California, Riverside, USA.
| |
Collapse
|
2
|
Xu L, Jang H, Nussinov R. Capturing Autoinhibited PDK1 Reveals the Linker's Regulatory Role, Informing Innovative Inhibitor Design. J Chem Inf Model 2024; 64:7709-7724. [PMID: 39348509 DOI: 10.1021/acs.jcim.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
PDK1 is crucial for PI3K/AKT/mTOR and Ras/MAPK cancer signaling. It phosphorylates AKT in a PIP3-dependent but S6K, SGK, and RSK kinases in a PIP3-independent manner. Unlike its substrates, its autoinhibited monomeric state has been unclear, likely due to its low population time, and phosphorylation in the absence of PIP3 has been puzzling too. Here, guided by experimental data, we constructed models and performed all-atom molecular dynamics simulations. In the autoinhibited PDK1 conformation that resembles autoinhibited AKT, binding of the linker between the kinase and PH domains to the PIF-binding pocket promotes the formation of the Glu130-Lys111 salt bridge and weakens the association of the kinase domain with the PH domain, shifting the population from the autoinhibited state to states accessible to the membrane and its kinase substrates. The interaction of the substrates' hydrophobic motif and the PDK1 PIF-binding pocket facilitates the release of the autoinhibition even in the absence of PIP3. Phosphorylation of the serine-rich motif within the linker further attenuates the association of the PH domain with the kinase domain. These suggest that while the monomeric autoinhibited state is relatively stable, it can readily shift to its active, catalysis-prone state to phosphorylate its diverse substrates. Our findings reveal the PDK1 activation mechanism and discover the regulatory role of PDK1's linker, which lead to two innovative linker-based inhibitor strategies: (i) locking the autoinhibited PDK1 through optimization of the interactions of AKT inhibitors with the PH domain of PDK1 and (ii) analogs (small molecules or peptidomimetics) that mimic the linker interactions with the PIF-binding pocket.
Collapse
Affiliation(s)
- Liang Xu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Leroux AE, Biondi RM. The choreography of protein kinase PDK1 and its diverse substrate dance partners. Biochem J 2023; 480:1503-1532. [PMID: 37792325 DOI: 10.1042/bcj20220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
The protein kinase PDK1 phosphorylates at least 24 distinct substrates, all of which belong to the AGC protein kinase group. Some substrates, such as conventional PKCs, undergo phosphorylation by PDK1 during their synthesis and subsequently get activated by DAG and Calcium. On the other hand, other substrates, including members of the Akt/PKB, S6K, SGK, and RSK families, undergo phosphorylation and activation downstream of PI3-kinase signaling. This review presents two accepted molecular mechanisms that determine the precise and timely phosphorylation of different substrates by PDK1. The first mechanism involves the colocalization of PDK1 with Akt/PKB in the presence of PIP3. The second mechanism involves the regulated docking interaction between the hydrophobic motif (HM) of substrates and the PIF-pocket of PDK1. This interaction, in trans, is equivalent to the molecular mechanism that governs the activity of AGC kinases through their HMs intramolecularly. PDK1 has been instrumental in illustrating the bi-directional allosteric communication between the PIF-pocket and the ATP-binding site and the potential of the system for drug discovery. PDK1's interaction with substrates is not solely regulated by the substrates themselves. Recent research indicates that full-length PDK1 can adopt various conformations based on the positioning of the PH domain relative to the catalytic domain. These distinct conformations of full-length PDK1 can influence the interaction and phosphorylation of substrates. Finally, we critically discuss recent findings proposing that PIP3 can directly regulate the activity of PDK1, which contradicts extensive in vitro and in vivo studies conducted over the years.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| |
Collapse
|
4
|
Sacerdoti M, Gross LZF, Riley AM, Zehnder K, Ghode A, Klinke S, Anand GS, Paris K, Winkel A, Herbrand AK, Godage HY, Cozier GE, Süß E, Schulze JO, Pastor-Flores D, Bollini M, Cappellari MV, Svergun D, Gräwert MA, Aramendia PF, Leroux AE, Potter BVL, Camacho CJ, Biondi RM. Modulation of the substrate specificity of the kinase PDK1 by distinct conformations of the full-length protein. Sci Signal 2023; 16:eadd3184. [PMID: 37311034 DOI: 10.1126/scisignal.add3184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
The activation of at least 23 different mammalian kinases requires the phosphorylation of their hydrophobic motifs by the kinase PDK1. A linker connects the phosphoinositide-binding PH domain to the catalytic domain, which contains a docking site for substrates called the PIF pocket. Here, we used a chemical biology approach to show that PDK1 existed in equilibrium between at least three distinct conformations with differing substrate specificities. The inositol polyphosphate derivative HYG8 bound to the PH domain and disrupted PDK1 dimerization by stabilizing a monomeric conformation in which the PH domain associated with the catalytic domain and the PIF pocket was accessible. In the absence of lipids, HYG8 potently inhibited the phosphorylation of Akt (also termed PKB) but did not affect the intrinsic activity of PDK1 or the phosphorylation of SGK, which requires docking to the PIF pocket. In contrast, the small-molecule valsartan bound to the PIF pocket and stabilized a second distinct monomeric conformation. Our study reveals dynamic conformations of full-length PDK1 in which the location of the linker and the PH domain relative to the catalytic domain determines the selective phosphorylation of PDK1 substrates. The study further suggests new approaches for the design of drugs to selectively modulate signaling downstream of PDK1.
Collapse
Affiliation(s)
- Mariana Sacerdoti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Karin Zehnder
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Abhijeet Ghode
- Biological Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires C1405BWE, Argentina
| | - Ganesh Srinivasan Anand
- Biological Sciences, National University of Singapore, Singapore 119077, Singapore
- Department of Chemistry, Huck Institutes of the Life Sciences, Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA
| | - Kristina Paris
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Statistics, University of Pittsburgh, WWPH 1821, Pittsburgh, PA 15213, USA
| | - Angelika Winkel
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Amanda K Herbrand
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - H Yasmin Godage
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Gyles E Cozier
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Evelyn Süß
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Jörg O Schulze
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Daniel Pastor-Flores
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- KBI Biopharma, Technologielaan 8, B-3001 Leuven, Belgium
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION, CONICET, Buenos Aires C1425FQD, Argentina
| | - María Victoria Cappellari
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION, CONICET, Buenos Aires C1425FQD, Argentina
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Melissa A Gräwert
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Pedro F Aramendia
- Centro de Investigaciones en Bionanociencias 'Elizabeth Jares-Erijman' CIBION, CONICET, Buenos Aires C1425FQD, Argentina
- Departamento de Química Inorgánica, Analítica y Química Física, FCEN, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- DKTK German Cancer Consortium (DKTK), Frankfurt, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Gordon MT, Ziemba BP, Falke JJ. PDK1:PKCα heterodimer association-dissociation dynamics in single-molecule diffusion tracks on a target membrane. Biophys J 2023; 122:2301-2310. [PMID: 36733254 PMCID: PMC10257113 DOI: 10.1016/j.bpj.2023.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Previous studies have documented the formation of a heterodimer between the two protein kinases PDK1 and PKCα on a lipid bilayer containing their target lipids. This work investigates the association-dissociation kinetics of this PDK1:PKCα heterodimer. The approach monitors the two-dimensional diffusion of single, membrane-associated PDK1 molecules for diffusivity changes as PKCα molecules bind and unbind. In the absence of PKCα, a membrane-associated PDK1 molecule exhibits high diffusivity (or large diffusion constant, D) because its membrane-contacting PH domain binds the target PIP3 lipid headgroup with little bilayer penetration, yielding minimal frictional drag against the bilayer. In contrast, membrane-associated PKCα contacts the bilayer via its C1A, C1B, and C2 domains, which each bind at least one target lipid with significant bilayer insertion, yielding a large frictional drag and low diffusivity. The present findings reveal that individual fluor-PDK1 molecules freely diffusing on the membrane surface undergo reversible switching between distinct high and low diffusivity states, corresponding to the PDK1 monomer and the PDK1:PKCα heterodimer, respectively. The observed single-molecule diffusion trajectories are converted to step length time courses, then subjected to two-state, hidden Markov modeling and dwell time analysis. The findings reveal that both the PDK1 monomer state and the PDK1:PKCα heterodimer state decay via simple exponential kinetics, yielding estimates of rate constants for state switching in both directions. Notably, the PDK1:PKCα heterodimer has been shown to competitively inhibit PDK1 phosphoactivation of AKT1, and is believed to play a tumor suppressor role by limiting excess activation of the highly oncogenic PDK1/AKT1/mTOR pathway. Thus, the present elucidation of the PDK1:PKCα association-dissociation kinetics has important biological and medical implications. More broadly, the findings illustrate the power of single-molecule diffusion measurements to reveal the kinetics of association-dissociation events in membrane signaling reactions that yield a large change in diffusive mobility.
Collapse
Affiliation(s)
- Moshe T Gordon
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Brian P Ziemba
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
6
|
Vesga AG, Villegas L, Vequi-Suplicy CC, Sorzano COS, Requejo-Isidro J. Quantitative characterization of membrane-protein reversible association using FCS. Biophys J 2023:S0006-3495(23)00042-5. [PMID: 36698316 DOI: 10.1016/j.bpj.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Functionally meaningful reversible protein-membrane interactions mediate many biological events. Fluorescence correlation spectroscopy (FCS) is increasingly used to quantitatively study the non-reversible binding of proteins to membranes using lipid vesicles in solution. However, the lack of a complete description of the phase and statistical equilibria in the case of reversible protein-membrane partitioning has hampered the application of FCS to quantify the partition coefficient (Kx). In this work, we further extend the theory that describes membrane-protein partitioning to account for spontaneous protein-membrane dissociation and reassociation to the same or a different lipid vesicle. We derive the probability distribution of proteins on lipid vesicles for reversible binding and demonstrate that FCS is a suitable technique for accurate Kx quantification of membrane-protein reversible association. We also establish the limits to Kx determination by FCS studying the Cramer-Rao bound on the variance of the retrieved parameters. We validate the mathematical formulation against reaction-diffusion simulations to study phase and statistical equilibria and compare the Kx obtained from a computational FCS titration experiment with the experimental ground truth. Finally, we demonstrate the application of our methodology studying the association of anti-HIV broadly neutralizing antibody (10E8-3R) to the membrane.
Collapse
Affiliation(s)
- Arturo G Vesga
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain; Unidad de Nanobiotecnología, CNB-CSIC-IMDEA Nanociencia Associated Unit, 28049 Madrid, Spain
| | - Lupe Villegas
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain
| | | | | | - Jose Requejo-Isidro
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain; Unidad de Nanobiotecnología, CNB-CSIC-IMDEA Nanociencia Associated Unit, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Cheshenko N, Bonanno JB, Hoffmann HH, Jangra RK, Chandran K, Rice CM, Almo SC, Herold BC. Cell-impermeable staurosporine analog targets extracellular kinases to inhibit HSV and SARS-CoV-2. Commun Biol 2022; 5:1096. [PMID: 36245045 PMCID: PMC9569420 DOI: 10.1038/s42003-022-04067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Herpes simplex virus (HSV) receptor engagement activates phospholipid scramblase triggering Akt translocation to the outer leaflet of the plasma membrane where its subsequent phosphorylation promotes viral entry. We hypothesize that this previously unrecognized outside-inside signaling pathway is employed by other viruses and that cell-impermeable kinase inhibitors could provide novel antivirals. We synthesized a cell-impermeable analog of staurosporine, CIMSS, which inhibited outer membrane HSV-induced Akt phosphorylation and blocked viral entry without inducing apoptosis. CIMSS also blocked the phosphorylation of 3-phosphoinositide dependent protein kinase 1 and phospholipase C gamma, which were both detected at the outer leaflet following HSV exposure. Moreover, vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein (VSV-S), but not native VSV or VSV pseudotyped with Ebola virus glycoprotein, triggered this scramblase-Akt outer membrane signaling pathway. VSV-S and native SARS-CoV-2 infection were inhibited by CIMSS. Thus, CIMSS uncovered unique extracellular kinase processes linked to HSV and SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Natalia Cheshenko
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, LA, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Betsy C Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
8
|
Garcia-Viloca M, Bayascas JR, Lluch JM, González-Lafont À. Molecular Insights into the Regulation of 3-Phosphoinositide-Dependent Protein Kinase 1: Modeling the Interaction between the Kinase and the Pleckstrin Homology Domains. ACS OMEGA 2022; 7:25186-25199. [PMID: 35910176 PMCID: PMC9330272 DOI: 10.1021/acsomega.2c02020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The 3-phosphoinositide-dependent protein kinase 1 (PDK1) K465E mutant kinase can still activate protein kinase B (PKB) at the membrane in a phosphatidylinositol-3,4,5-trisphosphate (PIP3, PtdIns(3,4,5)P3) independent manner. To understand this new PDK1 regulatory mechanism, docking and molecular dynamics calculations were performed for the first time to simulate the wild-type kinase domain-pleckstrin homology (PH) domain complex with PH-in and PH-out conformations. These simulations were then compared to the PH-in model of the KD-PH(mutant K465E) PDK1 complex. Additionally, three KD-PH complexes were simulated, including a substrate analogue bound to a hydrophobic pocket (denominated the PIF-pocket) substrate-docking site. We find that only the PH-out conformation, with the PH domain well-oriented to interact with the cellular membrane, is active for wild-type PDK1. In contrast, the active conformation of the PDK1 K465E mutant is PH-in, being ATP-stable at the active site while the PIF-pocket is more accessible to the peptide substrate. We corroborate that both the docking-site binding and the catalytic activity are in fact enhanced in knock-in mouse samples expressing the PDK1 K465E protein, enabling the phosphorylation of PKB in the absence of PIP3 binding.
Collapse
Affiliation(s)
- Mireia Garcia-Viloca
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jose Ramón Bayascas
- Institut
de Neurociències, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Department
of Biochemistry and Molecular Biology, Biochemistry Unit of the School
of Medicine, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - José M. Lluch
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Àngels González-Lafont
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
9
|
Conduit SE, Davies EM, Fulcher AJ, Oorschot V, Mitchell CA. Superresolution Microscopy Reveals Distinct Phosphoinositide Subdomains Within the Cilia Transition Zone. Front Cell Dev Biol 2021; 9:634649. [PMID: 33996795 PMCID: PMC8120242 DOI: 10.3389/fcell.2021.634649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Primary cilia are evolutionary conserved microtubule-based organelles that protrude from the surface of most mammalian cells. Phosphoinositides (PI) are membrane-associated signaling lipids that regulate numerous cellular events via the recruitment of lipid-binding effectors. The temporal and spatial membrane distribution of phosphoinositides is regulated by phosphoinositide kinases and phosphatases. Recently phosphoinositide signaling and turnover has been observed at primary cilia. However, the precise localization of the phosphoinositides to specific ciliary subdomains remains undefined. Here we use superresolution microscopy (2D stimulated emission depletion microscopy) to map phosphoinositide distribution at the cilia transition zone. PI(3,4,5)P3 and PI(4,5)P2 localized to distinct subregions of the transition zone in a ring-shape at the inner transition zone membrane. Interestingly, the PI(3,4,5)P3 subdomain was more distal within the transition zone relative to PtdIns(4,5)P2. The phosphoinositide effector kinase pAKT(S473) localized in close proximity to these phosphoinositides. The inositol polyphosphate 5-phosphatase, INPP5E, degrades transition zone phosphoinositides, however, studies of fixed cells have reported recombinant INPP5E localizes to the ciliary axoneme, distant from its substrates. Notably, here using live cell imaging and optimized fixation/permeabilization protocols INPP5E was found concentrated at the cilia base, in a distribution characteristic of the transition zone in a ring-shaped domain of similar dimensions to the phosphoinositides. Collectively, this superresolution map places the phosphoinositides in situ with the transition zone proteins and reveals that INPP5E also likely localizes to a subdomain of the transition zone membrane, where it is optimally situated to control local phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Elizabeth M Davies
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Velnati S, Centonze S, Girivetto F, Capello D, Biondi RM, Bertoni A, Cantello R, Ragnoli B, Malerba M, Graziani A, Baldanzi G. Identification of Key Phospholipids That Bind and Activate Atypical PKCs. Biomedicines 2021; 9:biomedicines9010045. [PMID: 33419210 PMCID: PMC7825596 DOI: 10.3390/biomedicines9010045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/02/2022] Open
Abstract
PKCζ and PKCι/λ form the atypical protein kinase C subgroup, characterised by a lack of regulation by calcium and the neutral lipid diacylglycerol. To better understand the regulation of these kinases, we systematically explored their interactions with various purified phospholipids using the lipid overlay assays, followed by kinase activity assays to evaluate the lipid effects on their enzymatic activity. We observed that both PKCζ and PKCι interact with phosphatidic acid and phosphatidylserine. Conversely, PKCι is unique in binding also to phosphatidylinositol-monophosphates (e.g., phosphatidylinositol 3-phosphate, 4-phosphate, and 5-phosphate). Moreover, we observed that phosphatidylinositol 4-phosphate specifically activates PKCι, while both isoforms are responsive to phosphatidic acid and phosphatidylserine. Overall, our results suggest that atypical Protein kinase C (PKC) localisation and activity are regulated by membrane lipids distinct from those involved in conventional PKCs and unveil a specific regulation of PKCι by phosphatidylinositol-monophosphates.
Collapse
Affiliation(s)
- Suresh Velnati
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
- Correspondence:
| | - Sara Centonze
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Federico Girivetto
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ricardo M. Biondi
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, 60590 Frankfurt, Germany;
- Biomedicine Research Institute of Buenos Aires—CONICET—Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Alessandra Bertoni
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
| | - Roberto Cantello
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
| | | | - Mario Malerba
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Respiratory Unit, Sant’Andrea Hospital, 13100 Vercelli, Italy;
| | - Andrea Graziani
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy;
- Division of Oncology, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (F.G.); (D.C.); (A.B.); (R.C.); (M.M.); (G.B.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
11
|
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J 2020; 477:3541-3565. [PMID: 32970140 PMCID: PMC7518857 DOI: 10.1042/bcj20200277] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E. Conduit
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|
12
|
Ghode A, Gross LZF, Tee WV, Guarnera E, Berezovsky IN, Biondi RM, Anand GS. Synergistic Allostery in Multiligand-Protein Interactions. Biophys J 2020; 119:1833-1848. [PMID: 33086047 PMCID: PMC7677135 DOI: 10.1016/j.bpj.2020.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Amide hydrogen-deuterium exchange mass spectrometry is powerful for describing combinatorial coupling effects of a cooperative ligand pair binding at noncontiguous sites: adenosine at the ATP-pocket and a docking peptide (PIFtide) at the PIF-pocket, on a model protein kinase PDK1. Binding of two ligands to PDK1 reveal multiple hotspots of synergistic allostery with cumulative effects greater than the sum of individual effects mediated by each ligand. We quantified this synergism and ranked these hotspots using a difference in deuteration-based approach, which showed that the strongest synergistic effects were observed at three of the critical catalytic loci of kinases: the αB-αC helices, and HRD-motif loop, and DFG-motif. Additionally, we observed weaker synergistic effects at a distal GHI-subdomain locus. Synergistic changes in deuterium exchange observed at a distal site but not at the intermediate sites of the large lobe of the kinase reveals allosteric propagation in proteins to operate through two modes. Direct electrostatic interactions between polar and charged amino acids that mediate targeted relay of allosteric signals, and diffused relay of allosteric signals through soft matter-like hydrophobic core amino acids. Furthermore, we provide evidence that the conserved β-3 strand lysine of protein kinases (Lys111 of PDK1) functions as an integrator node to coordinate allosteric coupling of the two ligand-binding sites. It maintains indirect interactions with the ATP-pocket and mediates a critical salt bridge with a glutamate (Glu130) of αC helix, which is conserved across all kinases. In summary, allosteric propagation in cooperative, dual-liganded enzyme targets is bidirectional and synergistic and offers a strategy for combinatorial drug development.
Collapse
Affiliation(s)
- Abhijeet Ghode
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Wei-Ven Tee
- Department of Biological Sciences, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Igor N Berezovsky
- Department of Biological Sciences, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|