1
|
Zhao Y, Du J, Zhuo J, Zhang Q, Dai L, Tang Y, Wang Y, Sheng A, Yao H, Liu W. CYB561 a potential prognostic biomarker for liver hepatocellular carcinoma. Clin Exp Med 2024; 25:23. [PMID: 39708189 DOI: 10.1007/s10238-024-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/05/2024] [Indexed: 12/23/2024]
Abstract
Liver hepatocellular carcinoma (LIHC) is a malignancy characterized by a high rate of recurrence, metastasis, and poor prognosis. Cytochrome b561 (CYB561) has been previously reported to be associated with tumor progression, but it has not been revealed in LIHC. The aim of this study was to investigate the prognostic value and potential function of CYB561 in LICH. The expression level, clinical correlation, prognosis, and biological function of CYB561 in LIHC were analyzed using The Cancer Genome Atlas(TCGA), Gene Expression Omnibus (GEO), TIMER2, Kaplan-Meier Plotter, and GEPIA2 databases. The expression of CYB561 in LIHC tissue samples was analyzed by immunohistochemical staining. The effect of CYB561 on the proliferation and migration of LIHC cells was investigated by using CYB561 knockdown in vitro. GSE149614 dataset was used to analyze the expression distribution of CYB561 in LIHC on a single-cell dimension. This study showed that CYB561 mRNA and protein were highly expressed in LIHC. High expression of CYB561 suggests poor prognosis in LICH patients and is an independent risk factor for LIHC. Wound-healing experiment, transwell experiment, and clonal formation experiment confirmed that CYB561 knockdown could inhibit the proliferation and migration of LIHC cells. Functional enrichment analysis showed that CYB561 was related to biological processes such as cell adhesion and immune response. KEGG enrichment analysis showed that CYB561 interacts with tumor-related signaling pathways. Single-cell analysis showed that CYB561 was mainly expressed in hepatocytes. Cells with high CYB561 expression had a higher degree of malignancy. Our study found that abnormal expression of CYB561 in LIHC suggested poor prognosis of LIHC and was related to tumor migration and proliferation. CYB561 is a potential prognostic predictor or therapeutic biomarker.
Collapse
Affiliation(s)
- Yanchun Zhao
- Department of Outpatient, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jingfang Du
- Department of Outpatient, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jian Zhuo
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Quanai Zhang
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Luxian Dai
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Yubao Tang
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Yao Wang
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Ankang Sheng
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Hanyu Yao
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Weiguang Liu
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China.
| |
Collapse
|
2
|
Ma Y, Duan L, Reisch B, Kimmig R, Iannaccone A, Gellhaus A. Impact of the Immunomodulatory Factor Soluble B7-H4 in the Progress of Preeclampsia by Inhibiting Essential Functions of Extravillous Trophoblast Cells. Cells 2024; 13:1372. [PMID: 39195262 DOI: 10.3390/cells13161372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
A key aspect of preeclampsia pathophysiology is the reduced invasiveness of trophoblasts and the impairment of spiral artery remodelling. Understanding the causes of altered trophoblast function is critical to understand the development of preeclampsia. B7-H4, a checkpoint molecule, controls a wide range of processes, including T-cell activation, cytokine release, and tumour progression. Our previous findings indicated that B7-H4 levels are elevated in both maternal blood and placental villous tissue during the early stages of preeclampsia. Here, we investigated the function of B7-H4 in trophoblast physiology. Recombinant B7-H4 protein was used to treat human SGHPL-5 extravillous trophoblast cells. Biological functions were investigated using MTT, wound healing, and transwell assays. Signalling pathways were analysed by immunoblotting and immunofluorescence. The functionality of B7-H4 was further confirmed by immunoblotting and immunohistochemical analysis in placental tissues from control and preeclamptic patients following therapeutic plasma exchange (TPE) or standard of care treatment. This study showed that B7-H4 inhibited the proliferation, migration, and invasion capacities of SGHPL-5 extravillous cells while promoting apoptosis by downregulating the PI3K/Akt/STAT3 signalling pathway. These results were consistently confirmed in placental tissues from preterm controls compared to early-onset preeclamptic placental tissues from patients treated with standard of care or TPE treatment. B7-H4 may play a role in the development of preeclampsia by inhibiting essential functions of extravillous trophoblast cells during placental development. One possible mechanism by which TPE improves pregnancy outcomes in preeclampsia is through the elimination of B7-H4 amongst other factors.
Collapse
Affiliation(s)
- Yuyang Ma
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Liyan Duan
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Beatrix Reisch
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
3
|
Dawidowicz M, Kot A, Mielcarska S, Psykała K, Kula A, Waniczek D, Świętochowska E. B7H4 Role in Solid Cancers: A Review of the Literature. Cancers (Basel) 2024; 16:2519. [PMID: 39061159 PMCID: PMC11275172 DOI: 10.3390/cancers16142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Anti-cancer immunotherapies entirely changed the therapeutic approach to oncological patients. However, despite the undeniable success of anti-PD-1, PD-L1, and CTLA-4 antibody treatments, their effectiveness is limited either by certain types of malignancies or by the arising problem of cancer resistance. B7H4 (aliases B7x, B7H4, B7S1, VTCN1) is a member of a B7 immune checkpoint family with a distinct expression pattern from classical immune checkpoint pathways. The growing amount of research results seem to support the thesis that B7H4 might be a very potent therapeutic target. B7H4 was demonstrated to promote tumour progression in immune "cold" tumours by promoting migration, proliferation of tumour cells, and cancer stem cell persistence. B7H4 suppresses T cell effector functions, including inflammatory cytokine production, cytolytic activity, proliferation of T cells, and promoting the polarisation of naïve CD4 T cells into induced Tregs. This review aimed to summarise the available information about B7H4, focusing in particular on clinical implications, immunological mechanisms, potential strategies for malignancy treatment, and ongoing clinical trials.
Collapse
Affiliation(s)
- Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Katarzyna Psykała
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| |
Collapse
|
4
|
Bolandi N, Khadem Ansari MH, Rasmi Y, Baradaran B. Cooperative Treatment of Gastric Cancer Using B7-H7 siRNA and Docetaxel; How Could They Modify Their Effectiveness? Adv Pharm Bull 2023; 13:573-582. [PMID: 37646055 PMCID: PMC10460818 DOI: 10.34172/apb.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Despite the high prevalence of gastric cancer (GC), drug resistance is a major problem for effective chemotherapy. B7-H7 is a novel member of the B7 superfamily and is expressed in most common cancers. However, the role of B7-H7 on the aggressiveness of GC and chemosensitivity has remained unknown. Therefore, this study was designed to assess the effect of B7-H7 suppression using small interference RNA (siRNA) in combination with docetaxel on GC cells. Methods MTT test was applied to determine the IC50 of docetaxel and the combined effect of B7-H7 siRNA and docetaxel on the viability of the MKN-45 cells. To determine B7-H7, BCL-2, BAX, and caspase-3-8-9 genes expression, qRT-PCR was performed. Furthermore, flow cytometry was applied to evaluate apoptosis and the cell cycle status. Finally, to evaluate the effect of this combination therapy on migratory capacity and colony-forming ability, wound healing assay and colony formation test were employed, respectively. Results B7-H7 suppression increased the chemo-sensitivity of MKN-45 cells to docetaxel. The expression of B7-H7 mRNA was reduced after using B7-H7 siRNA and docetaxel in MKN-45 GC cells. Also, B7-H7 suppression alongside docetaxel reduced cell migration and colony formation rate, arrested the cell cycle at the G2-M phase, and induced apoptosis by modulating the expression of apoptotic target genes. Conclusion B7-H7 plays a significant role in the chemo-sensitivity and pathogenesis of GC. Therefore, B7-H7 suppression, in combination with docetaxel, may be a promising therapeutic approach in treating GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Integrated Bioinformatic Analysis of DNA Methylation and Immune Infiltration in Endometrial Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5119411. [PMID: 35774278 PMCID: PMC9237709 DOI: 10.1155/2022/5119411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 04/10/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
Abstract
Background Endometrial cancer greatly threatens the health of female. Emerging evidences have demonstrated that DNA methylation and immune infiltration are involved in the occurrence and development of endometrial cancer. However, the mechanism and prognostic biomarkers of endometrial cancer are still unclear. In this study, we assess DNA methylation and immune infiltration via bioinformatic analysis. Methods The latest RNA-Seq, DNA methylation data, and clinical data related to endometrial cancer were downloaded from the UCSC Xena dataset. The methylation-driven genes were selected, and then the risk score was obtained using “MethylMix” and “corrplot” R packages. The connection between methylated genes and the expression of screened driven genes were explored using “survminer” and “beeswarm” packages, respectively. Finally, the role of VTCN1in immune infiltration was analyzed using “CIBERSORT” package. Results In this study, 179 upregulated genes, and 311 downregulated genes were identified and found to be related to extracellular matrix organization, cell–cell junctions, and cell adhesion molecular binding. The methylation-driven gene VTCN1 was selected, and patients classified to the hypomethylation and high expression group displayed poor prognosis. The VTCN1 gene exhibited highest correlation coefficient between methylation and expression. More importantly, the hypomethylation of promoter of VTCN1 led to its high expression, thereby induce tumor development by inhibiting CD8+ T cell infiltration. Conclusions Overall, our study was the first to reveal the mechanism of endometrial cancer by assessing DNA methylation and immune infiltration via integrated bioinformatic analysis. In addition, we found a pivotal prognostic biomarker for the disease. Our study provides potential targets for the diagnosis and prognosis of endometrial cancer in the future.
Collapse
|
6
|
Salman S, Meyers DJ, Wicks EE, Lee SN, Datan E, Thomas AM, Anders NM, Hwang Y, Lyu Y, Yang Y, Jackson W, Dordai D, Rudek MA, Semenza GL. HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy. J Clin Invest 2022; 132:156774. [PMID: 35499076 PMCID: PMC9057582 DOI: 10.1172/jci156774] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer mortality worldwide and available therapies, including immunotherapies, are ineffective for many patients. HCC is characterized by intratumoral hypoxia, and increased expression of hypoxia-inducible factor 1α (HIF-1α) in diagnostic biopsies is associated with patient mortality. Here we report the development of 32-134D, a low-molecular-weight compound that effectively inhibits gene expression mediated by HIF-1 and HIF-2 in HCC cells, and blocks human and mouse HCC tumor growth. In immunocompetent mice bearing Hepa1-6 HCC tumors, addition of 32-134D to anti-PD1 therapy increased the rate of tumor eradication from 25% to 67%. Treated mice showed no changes in appearance, behavior, body weight, hemoglobin, or hematocrit. Compound 32-134D altered the expression of a large battery of genes encoding proteins that mediate angiogenesis, glycolytic metabolism, and responses to innate and adaptive immunity. This altered gene expression led to significant changes in the tumor immune microenvironment, including a decreased percentage of tumor-associated macrophages and myeloid-derived suppressor cells, which mediate immune evasion, and an increased percentage of CD8+ T cells and natural killer cells, which mediate antitumor immunity. Taken together, these preclinical findings suggest that combining 32-134D with immune checkpoint blockade may represent a breakthrough therapy for HCC.
Collapse
Affiliation(s)
- Shaima Salman
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | | | | | - Sophia N. Lee
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | - Aline M. Thomas
- Institute for Cell Engineering
- Department of Radiology and Radiological Science
| | - Nicole M. Anders
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center
| | - Yousang Hwang
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- Department of Pharmacology and Molecular Sciences
| | - Yajing Lyu
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | - Yongkang Yang
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center
| | - Walter Jackson
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | - Dominic Dordai
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
| | - Michelle A. Rudek
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregg L. Semenza
- Armstrong Oxygen Biology Research Center
- Institute for Cell Engineering
- McKusick-Nathans Department of Genetic Medicine
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center
| |
Collapse
|
7
|
Chi J, Liu Y, Yang L, Yang J. Silencing of B7H4 represses the development of oral squamous cell carcinoma through promotion of M1 macrophage polarization. J Oral Maxillofac Surg 2022; 80:1408-1423. [DOI: 10.1016/j.joms.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
|
8
|
Johnson AA, Shokhirev MN. Pan-Tissue Aging Clock Genes That Have Intimate Connections with the Immune System and Age-Related Disease. Rejuvenation Res 2021; 24:377-389. [PMID: 34486398 DOI: 10.1089/rej.2021.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In our recent transcriptomic meta-analysis, we used random forest machine learning to accurately predict age in human blood, bone, brain, heart, and retina tissues given gene inputs. Although each tissue-specific model utilized a unique number of genes for age prediction, we found that the following six genes were prioritized in all five tissues: CHI3L2, CIDEC, FCGR3A, RPS4Y1, SLC11A1, and VTCN1. Since being selected for age prediction in multiple tissues is unique, we decided to explore these pan-tissue clock genes in greater detail. In the present study, we began by performing over-representation and network topology-based enrichment analyses in the Gene Ontology Biological Process database. These analyses revealed that the immunological terms "response to protozoan," "immune response," and "positive regulation of immune system process" were significantly enriched by these clock inputs. Expression analyses in mouse and human tissues identified that these inputs are frequently upregulated or downregulated with age. A detailed literature search showed that all six genes had noteworthy connections to age-related disease. For example, mice deficient in Cidec are protected against various metabolic defects, while suppressing VTCN1 inhibits age-related cancers in mouse models. Using a large multitissue transcriptomic dataset, we additionally generate a novel, minimalistic aging clock that can predict human age using just these six genes as inputs. Taken all together, these six genes are connected to diverse aspects of aging.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
9
|
Muranushi R, Araki K, Yokobori T, Chingunjav B, Hoshino K, Dolgormaa G, Hagiwara K, Yamanaka T, Ishii N, Tsukagoshi M, Igarashi T, Watanabe A, Kubo N, Harimoto N, Shimoda Y, Sano R, Oyama T, Saeki H, Shirabe K. High membrane expression of CMTM6 in hepatocellular carcinoma is associated with tumor recurrence. Cancer Sci 2021; 112:3314-3323. [PMID: 34080242 PMCID: PMC8353897 DOI: 10.1111/cas.15004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6) maintains membrane PD-L1 expression by controlling its endosomal recycling. However, in patients with hepatocellular carcinoma (HCC), the correlation among CMTM6, B7 family ligands, and CD8-positive cytotoxic T lymphocytes (CTLs), and the molecular function of CMTM6 in HCC have not been established. We performed immunohistochemistry to evaluate the relationships among CMTM6 expression, clinicopathological factors, B7 family ligands expression, and CTL infiltration in HCC samples. Moreover, we established CMTM6-knockout human HCC cell lines to evaluate the function of human CMTM6 in immune regulation and tumor viability. CMTM6 expression was positively associated with membrane B7 family ligands expression and CTL infiltration in HCC samples. High CMTM6 expression in HCC tissues was associated with the expression of the proliferation marker Ki-67 and shorter recurrence-free survival. In vitro analysis showed the downregulation of membrane B7 family ligands and proliferation potency in the CMTM6-knockout human HCC cell line. High membrane CMTM6 expression was associated with tumor recurrence and proliferation via the regulation of membranous B7 family ligands expression. Thus, CMTM6 might be a biomarker to predict the risk of HCC recurrence and a therapeutic target to suppress tumor growth and increase CTL activity.
Collapse
Affiliation(s)
- Ryo Muranushi
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenichiro Araki
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Batbayar Chingunjav
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kouki Hoshino
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Gantumur Dolgormaa
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kei Hagiwara
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takahiro Yamanaka
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Norihiro Ishii
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mariko Tsukagoshi
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Innovative Cancer Immunotherapy, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takamichi Igarashi
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akira Watanabe
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Norio Kubo
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Norifumi Harimoto
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuki Shimoda
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Division of Gastroenterological Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Division of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
10
|
Kgatle MM, Boshomane TMG, Lawal IO, Mokoala KMG, Mokgoro NP, Lourens N, Kairemo K, Zeevaart JR, Vorster M, Sathekge MM. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach. Int J Mol Sci 2021; 22:4109. [PMID: 33921181 PMCID: PMC8071559 DOI: 10.3390/ijms22084109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Emerging research demonstrates that co-inhibitory immune checkpoints (ICs) remain the most promising immunotherapy targets in various malignancies. Nonetheless, ICIs have offered insignificant clinical benefits in the treatment of advanced prostate cancer (PCa) especially when they are used as monotherapies. Current existing PCa treatment initially offers an improved clinical outcome and overall survival (OS), however, after a while the treatment becomes resistant leading to aggressive and uncontrolled disease associated with increased mortality and morbidity. Concurrent combination of the ICIs with radionuclides therapy that has rapidly emerged as safe and effective targeted approach for treating PCa patients may shift the paradigm of PCa treatment. Here, we provide an overview of the contextual contribution of old and new emerging inhibitory ICs in PCa, preclinical and clinical studies supporting the use of these ICs in treating PCa patients. Furthermore, we will also describe the potential of using a combinatory approach of ICIs and radionuclides therapy in treating PCa patients to enhance efficacy, durable cancer control and OS. The inhibitory ICs considered in this review are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1), V-domain immunoglobulin suppressor of T cell activation (VISTA), indoleamine 2,3-dioxygenase (IDO), T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), B7 homolog 3 (B7-H3) and B7-H4.
Collapse
Affiliation(s)
- Mankgopo M. Kgatle
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Neo P. Mokgoro
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Nico Lourens
- Department of Urology, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kalevo Kairemo
- Departments of Molecular Radiotherapy & Nuclear Medicine, Docrates Cancer Center, 00180 Helsinki, Finland;
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Radiochemistry, South African Nuclear Energy Corporation SOC (Necsa), Pelindaba 0001, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
11
|
Hao TT, Liao R, Lei DL, Hu GL, Luo F. Inhibition of B7-H4 promotes hepatocellular carcinoma cell apoptosis and autophagy through the PI3K signaling pathway. Int Immunopharmacol 2020; 88:106889. [PMID: 32805693 DOI: 10.1016/j.intimp.2020.106889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
B7-H4 and autophagy can regulate or be induced by the PI3K signaling pathway. However, the association between B7-H4 and autophagy in hepatocellular carcinoma (HCC)remains unclear. The aim of this work was to investigate whether B7-H4 regulates autophagy via the PI3K signaling pathway in HCC cells. Here, western blotting was used to measure the expression of the related proteins involved in changes in of autophagy and apoptosis, such as LC3, P62, cleaved caspase 3, cleaved PARP, BCL-2, and BAX in Huh7 and Hep3B cells. Additionally, PI3K/AKT/mTOR signaling pathway proteins were measured. Cell counting kit-8 and flow cytometry were used to analyze the effects of B7-H4 siRNA interference on cell proliferation with the interference of B7-H4 siRNA. We found that B7-H4 siRNA increased HCC cell apoptosis and autophagy, and reduced cell proliferation. Moreover, the apoptosis-related proteins cleaved caspase 3, cleaved PARP and BAX were increased and Bcl-2 was decreased after B7-H4 siRNA interference. The expression level of the autophagy-related protein LC3Ⅱ was upregulated, while expression of the autophagy adaptor P62 expression was decreased in B7-H4 siRNA-pretreated cells. Furthermore, our data revealed that B7-H4 regulated apoptosis and autophagy through the PI3K signaling pathway in HCC cells. Therefore, these results suggested that B7-H4 plays an important role in HCC progression by affecting cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Tuan-Tuan Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Deng-Liang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gang-Li Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fang Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|