1
|
Siri S, Burchett A, Datta M. Simulating the impact of tumor mechanical forces on glymphatic networks in the brain parenchyma. Biomech Model Mechanobiol 2024; 23:2229-2241. [PMID: 39298038 DOI: 10.1007/s10237-024-01890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
The brain glymphatic system is currently being explored in the context of many neurological disorders and diseases, including traumatic brain injury, Alzheimer's disease, and ischemic stroke. However, little is known about the impact of brain tumors on glymphatic function. Mechanical forces generated during tumor development and growth may be responsible for compromised glymphatic transport pathways, reducing waste clearance and cerebrospinal fluid (CSF) transport in the brain parenchyma. One such force is solid stress, i.e., growth-induced forces from cell hyperproliferation and excess matrix deposition. Because there are no prior studies assessing the impact of tumor-derived solid stress on glymphatic system structure and performance in the brain parenchyma, this study serves to fill an important gap in the field. We adapted a previously developed Electrical Analog Model using MATLAB Simulink for glymphatic transport coupled with Finite Element Analysis for tumor mechanical stresses and strains in COMSOL. This allowed simulation of the impact of tumor mechanical force generation on fluid transport within brain parenchymal glymphatic units-which include perivascular spaces, astrocytic networks, interstitial spaces, and capillary basement membranes. We conducted a parametric analysis to compare the contributions of tumor size, tumor proximity, and ratio of glymphatic subunits to the stress and strain experienced by the glymphatic unit and corresponding reduction in flow rate of CSF. Mechanical stresses intensify with proximity to the tumor and increasing tumor size, highlighting the vulnerability of nearby glymphatic units to tumor-derived forces. Our stress and strain profiles reveal compressive deformation of these surrounding glymphatics and demonstrate that varying the relative contributions of astrocytes vs. interstitial spaces impact the resulting glymphatic structure significantly under tumor mechanical forces. Increased tumor size and proximity caused increased stress and strain across all glymphatic subunits, as does decreased astrocyte composition. Indeed, our model reveals an inverse correlation between extent of astrocyte contribution to the composition of the glymphatic unit and the resulting mechanical stress. This increased mechanical strain across the glymphatic unit decreases the venous efflux rate of CSF, dependent on the degree of strain and the specific glymphatic subunit of interest. For example, a 20% mechanical strain on capillary basement membranes does not significantly decrease venous efflux (2% decrease in flow rates), while the same magnitude of strain on astrocyte networks and interstitial spaces decreases efflux flow rates by 7% and 22%, respectively. Our simulations reveal that solid stress from growing brain tumors directly reduces glymphatic fluid transport, independently from biochemical effects from cancer cells. Understanding these pathophysiological implications is crucial for developing targeted interventions aimed at restoring effective waste clearance mechanisms in the brain. This study opens potential avenues for future experimental research in brain tumor-related glymphatic dysfunction.
Collapse
Affiliation(s)
- Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Gao M, Liu Z, Zang H, Wu X, Yan Y, Lin H, Yuan J, Liu T, Zhou Y, Liu J. A Histopathologic Correlation Study Evaluating Glymphatic Function in Brain Tumors by Multiparametric MRI. Clin Cancer Res 2024; 30:4876-4886. [PMID: 38848042 PMCID: PMC11528195 DOI: 10.1158/1078-0432.ccr-24-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE This study aimed to elucidate the impact of brain tumors on cerebral edema and glymphatic drainage by leveraging advanced MRI techniques to explore the relationships among tumor characteristics, glymphatic function, and aquaporin-4 (AQP4) expression levels. EXPERIMENTAL DESIGN In a prospective cohort from March 2022 to April 2023, patients with glioblastoma, brain metastases, and aggressive meningiomas, alongside age- and sex-matched healthy controls, underwent 3.0T MRI, including diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index and multiparametric MRI for quantitative brain mapping. Tumor and peritumor tissues were analyzed for AQP4 expression levels via immunofluorescence. Correlations among MRI parameters, glymphatic function (DTI-ALPS index), and AQP4 expression levels were statistically assessed. RESULTS Among 84 patients (mean age: 55 ± 12 years; 38 males) and 59 controls (mean age: 54 ± 8 years; 23 males), patients with brain tumor exhibited significantly reduced glymphatic function (DTI-ALPS index: 2.315 vs. 2.879; P = 0.001) and increased cerebrospinal fluid volume (201.376 cm³ vs. 115.957 cm³; P = 0.001). A negative correlation was observed between tumor volume and the DTI-ALPS index (r: -0.715, P < 0.001), whereas AQP4 expression levels correlated positively with peritumoral brain edema volume (r: 0.989, P < 0.001) and negatively with proton density in peritumoral brain edema areas (ρ: -0.506, P < 0.001). CONCLUSIONS Our findings highlight the interplay among tumor-induced compression, glymphatic dysfunction, and altered fluid dynamics, demonstrating the utility of DTI-ALPS and multiparametric MRI in understanding the pathophysiology of tumor-related cerebral edema. These insights provide a radiological foundation for further neuro-oncological investigations into the glymphatic system. See related commentary by Surov and Borggrefe, p. 4813.
Collapse
Affiliation(s)
- Min Gao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhengliang Liu
- School of Computing, The University of Georgia, Athens, Georgia
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiong Wu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yizhong Yan
- National Engineering Research Center of Human Stem Cell, Changsha, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, Georgia
| | - Yu Zhou
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology Quality Control Center, Hunan, China
| |
Collapse
|
3
|
Xin L, Madarasz A, Ivan DC, Weber F, Aleandri S, Luciani P, Locatelli G, Proulx ST. Impairment of spinal CSF flow precedes immune cell infiltration in an active EAE model. J Neuroinflammation 2024; 21:272. [PMID: 39444001 PMCID: PMC11520187 DOI: 10.1186/s12974-024-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Accumulation of immune cells and proteins in the subarachnoid space (SAS) is found during multiple sclerosis and in the animal model experimental autoimmune encephalomyelitis (EAE). Whether the flow of cerebrospinal fluid (CSF) along the SAS of the spinal cord is impacted is yet unknown. Combining intravital near-infrared (NIR) imaging with histopathological analyses, we observed a significantly impaired bulk flow of CSF tracers within the SAS of the spinal cord prior to EAE onset, which persisted until peak stage and was only partially recovered during chronic disease. The impairment of spinal CSF flow coincided with the appearance of fibrin aggregates in the SAS, however, it preceded immune cell infiltration and breakdown of the glia limitans superficialis. Conversely, cranial CSF efflux to cervical lymph nodes was not altered during the disease course. Our study highlights an early and persistent impairment of spinal CSF flow and suggests it as a sensitive imaging biomarker for pathological changes within the leptomeninges.
Collapse
Affiliation(s)
- Li Xin
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Adrian Madarasz
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Florian Weber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
4
|
Wang J, Lv T, Jia F, Li Y, Ma W, Xiao ZP, Yu W, Zhao H, Zhang X, Hu Q. Subarachnoid hemorrhage distinctively disrupts the glymphatic and meningeal lymphatic systems in beagles. Theranostics 2024; 14:6053-6070. [PMID: 39346537 PMCID: PMC11426235 DOI: 10.7150/thno.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) induced acute impairment of the glymphatic system, but few have investigated the dysfunction of the meningeal lymphatic system and their contribution to the pathophysiology of SAH. In addition, most studies were conducted in rodent animals. We aimed to investigate the impact of SAH on glymphatic and meningeal lymphatic function in a large animal model using beagles and to evaluate the effects of intermittent cistern magna CSF drainage on these systems. Methods: The SAH model was created in beagles via endovascular perforation using a digital subtraction angiography machine. Intermittent cistern magna CSF drain was performed daily from 1 d to 3 d after SAH. We examined CSF pressure, neuronal death, enlargement of perivascular space (PVS), hydrocephalus, and neurological and cognitive deficits before and after SAH. The dynamics of glymphatic and meningeal lymphatic functions were analyzed by quantifying the signal intensity of dimeglumine gadopentetate (Gd-DTPA) using T1-weighted magnetic resonance imaging (MRI). Measurements were taken before SAH and at 1 h, 1 week, and 2 weeks post-SAH. Results: SAH in beagles caused significant blood clots, neuronal death, increased CSF pressure, hydrocephalus, and neurological and cognitive deficits. MRI revealed dilated ventricles and enlarged PVS post-SAH. The glymphatic system's function, assessed by Gd-DTPA distribution, showed reduced CSF influx and glymphatic impairment after SAH, particularly in the ipsilateral hemisphere, persisting for a week with partial recovery at 2 weeks. For lymphatic clearance, Gd-DTPA rapidly filled the olfactory bulbs, optic nerves, facial and vestibulocochlear nerves, and spinal nerves under normal conditions. SAH caused delayed and reduced Gd-DTPA efflux outflow in these areas, disrupting lymphatic clearance. Despite initial dysfunction, increased hemoglobin levels in cervical lymph nodes indicated active blood clearance post-SAH, with recovery by 2 weeks. Treatment with intermittent cistern magna CSF drain significantly ameliorated the glymphatic and meningeal lymphatic dysfunction after SAH. Conclusion: SAH impaired both glymphatic and meningeal lymphatic functions in beagles, with better restoration of lymphatic function post-SAH, which may contribute to functional recovery after SAH. External CSF drain is an effective therapeutic approach to facilitate the recovery of glymphatic and meningeal lymphatic function following SAH.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Ma
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Peng Xiao
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Weifeng Yu
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
- Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
5
|
Madarasz A, Xin L, Proulx ST. Clearance of erythrocytes from the subarachnoid space through cribriform plate lymphatics in female mice. EBioMedicine 2024; 107:105295. [PMID: 39178745 PMCID: PMC11388277 DOI: 10.1016/j.ebiom.2024.105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Atraumatic subarachnoid haemorrhage (SAH) is associated with high morbidity and mortality. Proposed mechanisms for red blood cell (RBC) clearance from the subarachnoid space (SAS) are erythrolysis, erythrophagocytosis or through efflux along cerebrospinal fluid (CSF) drainage routes. We aimed to elucidate the mechanisms of RBC clearance from the SAS to identify targetable efflux pathways. METHODS Autologous fluorescently-labelled RBCs along with PEGylated 40 kDa near-infrared tracer (P40D800) were infused via the cisterna magna (i.c.m.) in female reporter mice for lymphatics or for resident phagocytes. Drainage pathways for RBCs to extracranial lymphatics were evaluated by in vivo and in situ near-infrared imaging and by immunofluorescent staining on decalcified cranial tissue or dural whole-mounts. FINDINGS RBCs drained to the deep cervical lymph nodes 15 min post i.c.m. infusion, showing similar dynamics as P40D800 tracer. Postmortem in situ imaging and histology showed perineural accumulations of RBCs around the optic and olfactory nerves. Numerous RBCs cleared through the lymphatics of the cribriform plate, whilst histology showed no relevant fast RBC clearance through dorsal dural lymphatics or by tissue-resident macrophage-mediated phagocytosis. INTERPRETATION This study provides evidence for rapid RBC drainage through the cribriform plate lymphatic vessels, whilst neither fast RBC clearance through dorsal dural lymphatics nor through spinal CSF efflux or phagocytosis was observed. Similar dynamics of P40D800 and RBCs imply open pathways for clearance that do not impose a barrier for RBCs. This finding suggests further evaluation of the cribriform plate lymphatic function and potential pharmacological targeting in models of SAH. FUNDING Swiss National Science Foundation (310030_189226), SwissHeart (FF191155).
Collapse
Affiliation(s)
- Adrian Madarasz
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Li Xin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Salvador AFM, Abduljawad N, Kipnis J. Meningeal Lymphatics in Central Nervous System Diseases. Annu Rev Neurosci 2024; 47:323-344. [PMID: 38648267 DOI: 10.1146/annurev-neuro-113023-103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nora Abduljawad
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Jonathan Kipnis
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
7
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
8
|
Xu H, Zhao X, Luo J. Combination of tumor antigen drainage and immune activation to promote a cancer-immunity cycle against glioblastoma. Cell Mol Life Sci 2024; 81:275. [PMID: 38907858 PMCID: PMC11335198 DOI: 10.1007/s00018-024-05300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
While conventional cancer modalities, such as chemotherapy and radiotherapy, act through direct killing of tumor cells, cancer immunotherapy elicits potent anti-tumor immune responses thereby eliminating tumors. Nevertheless, promising outcomes have not been reported in patients with glioblastoma (GBM) likely due to the immune privileged status of the central nervous system and immunosuppressive micro-environment within GBM. In the past years, several exciting findings, such as the re-discovery of meningeal lymphatic vessels (MLVs), three-dimensional anatomical reconstruction of MLV networks, and the demonstration of the promotion of GBM immunosurveillance by lymphatic drainage enhancement, have revealed an intricate communication between the nervous and immune systems, and brought hope for the development of new GBM treatment. Based on conceptual framework of the updated cancer-immunity (CI) cycle, here we focus on GBM antigen drainage and immune activation, the early events in driving the CI cycle. We also discuss the implications of these findings for developing new therapeutic approaches in tackling fatal GBM in the future.
Collapse
Affiliation(s)
- Han Xu
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xiaomei Zhao
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jincai Luo
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Eide PK. Neurosurgery and the glymphatic system. Acta Neurochir (Wien) 2024; 166:274. [PMID: 38904802 PMCID: PMC11192689 DOI: 10.1007/s00701-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
The discovery of the glymphatic system has fundamentally altered our comprehension of cerebrospinal fluid transport and the removal of waste from brain metabolism. In the past decade, since its initial characterization, research on the glymphatic system has surged exponentially. Its potential implications for central nervous system disorders have sparked significant interest in the field of neurosurgery. Nonetheless, ongoing discussions and debates persist regarding the concept of the glymphatic system, and our current understanding largely relies on findings from experimental animal studies. This review aims to address several key inquiries: What methodologies exist for evaluating glymphatic function in humans today? What is the current evidence supporting the existence of a human glymphatic system? Can the glymphatic system be considered distinct from the meningeal-lymphatic system? What is the human evidence for glymphatic-meningeal lymphatic system failure in neurosurgical diseases? Existing literature indicates a paucity of techniques available for assessing glymphatic function in humans. Thus far, intrathecal contrast-enhanced magnetic resonance imaging (MRI) has shown the most promising results and have provided evidence for the presence of a glymphatic system in humans, albeit with limitations. It is, however, essential to recognize the interconnection between the glymphatic and meningeal lymphatic systems, as they operate in tandem. There are some human studies demonstrating deteriorations in glymphatic function associated with neurosurgical disorders, enriching our understanding of their pathophysiology. However, the translation of this knowledge into clinical practice is hindered by the constraints of current glymphatic imaging modalities.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Nydalen, Pb 4950 N-0424, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Siri S, Burchett A, Datta M. Simulating the Impact of Tumor Mechanical Forces on Glymphatic Networks in the Brain Parenchyma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.594808. [PMID: 38826201 PMCID: PMC11142116 DOI: 10.1101/2024.05.18.594808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background The brain glymphatic system is currently being explored in the context of many neurological disorders and diseases, including traumatic brain injury, Alzheimer's disease, and ischemic stroke. However, little is known about the impact of brain tumors on glymphatic function. Mechanical forces generated during tumor development and growth may be responsible for compromised glymphatic transport pathways, reducing waste clearance and cerebrospinal fluid (CSF) transport in the brain parenchyma. One such force is solid stress, i.e., growth-induced forces from cell hyperproliferation and excess matrix deposition. Because there are no prior studies assessing the impact of tumor-derived solid stress on glymphatic system structure and performance in the brain parenchyma, this study serves to fill an important gap in the field. Methods We adapted a previously developed Electrical Analog Model using MATLAB Simulink for glymphatic transport coupled with Finite Element Analysis for tumor mechanical stresses and strains in COMSOL. This allowed simulation of the impact of tumor mechanical force generation on fluid transport within brain parenchymal glymphatic units - which include paravascular spaces, astrocytic networks, interstitial spaces, and capillary basement membranes. We conducted a parametric analysis to compare the contributions of tumor size, tumor proximity, and ratio of glymphatic subunits to the stress and strain experienced by the glymphatic unit and corresponding reduction in flow rate of CSF. Results Mechanical stresses intensify with proximity to the tumor and increasing tumor size, highlighting the vulnerability of nearby glymphatic units to tumor-derived forces. Our stress and strain profiles reveal compressive deformation of these surrounding glymphatics and demonstrate that varying the relative contributions of astrocytes vs. interstitial spaces impact the resulting glymphatic structure significantly under tumor mechanical forces. Increased tumor size and proximity caused increased stress and strain across all glymphatic subunits, as does decreased astrocyte composition. Indeed, our model reveals an inverse correlation between extent of astrocyte contribution to the composition of the glymphatic unit and the resulting mechanical stress. This increased mechanical strain across the glymphatic unit decreases the venous efflux rate of CSF, dependent on the degree of strain and the specific glymphatic subunit of interest. For example, a 20% mechanical strain on capillary basement membranes does not significantly decrease venous efflux (2% decrease in flow rates), while the same magnitude of strain on astrocyte networks and interstitial spaces decreases efflux flow rates by 7% and 22%, respectively. Conclusion Our simulations reveal that solid stress from brain tumors directly reduces glymphatic fluid transport, independently from biochemical effects from cancer cells. Understanding these pathophysiological implications is crucial for developing targeted interventions aimed at restoring effective waste clearance mechanisms in the brain.This study opens potential avenues for future experimental research in brain tumor-related glymphatic dysfunction.
Collapse
|
11
|
Chae J, Choi M, Choi J, Yoo SJ. The nasal lymphatic route of CSF outflow: implications for neurodegenerative disease diagnosis and monitoring. Anim Cells Syst (Seoul) 2024; 28:45-54. [PMID: 38292931 PMCID: PMC10826790 DOI: 10.1080/19768354.2024.2307559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Cerebrospinal fluid (CSF) plays a crucial role in the brain's lymphatics as it traverses the central nervous system (CNS). Its primary function is to facilitate the outward transport of waste. Among the various CSF outflow pathways, the route through the cribriform plate along the olfactory nerves stands out as the most predominant. This review describes the outflow pathway of CSF into the nasal lymphatics. Additionally, we examine existing studies to describe mutual influences observed between the brain and extracranial regions due to this outflow pathway. Notably, pathological conditions in the CNS often influence CSF outflow, leading to observable changes in extracranial regions. The established connection between the brain and the nose is significant, and our review underscores its potential relevance in monitoring CNS ailments, including neurodegenerative diseases. Considering that aging - the most significant risk factor for the onset of neurodegeneration - is also a principal factor in CSF turnover alterations, we suggest a novel approach to studying neurodegenerative diseases in therapeutic terms.
Collapse
Affiliation(s)
- Jiwon Chae
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Mina Choi
- Keybasic Co., ltd, Seoul, Republic of Korea
| | | | - Seung-Jun Yoo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Shirokov A, Blokhina I, Fedosov I, Ilyukov E, Terskov A, Myagkov D, Tuktarov D, Tzoy M, Adushkina V, Zlatogosrkaya D, Evsyukova A, Telnova V, Dubrovsky A, Dmitrenko A, Manzhaeva M, Krupnova V, Tuzhilkin M, Elezarova I, Navolokin N, Saranceva E, Iskra T, Lykova E, Semyachkina-Glushkovskaya O. Different Effects of Phototherapy for Rat Glioma during Sleep and Wakefulness. Biomedicines 2024; 12:262. [PMID: 38397864 PMCID: PMC10886766 DOI: 10.3390/biomedicines12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
There is an association between sleep quality and glioma-specific outcomes, including survival. The critical role of sleep in survival among subjects with glioma may be due to sleep-induced activation of brain drainage (BD), that is dramatically suppressed in subjects with glioma. Emerging evidence demonstrates that photobiomodulation (PBM) is an effective technology for both the stimulation of BD and as an add-on therapy for glioma. Emerging evidence suggests that PBM during sleep stimulates BD more strongly than when awake. In this study on male Wistar rats, we clearly demonstrate that the PBM course during sleep vs. when awake more effectively suppresses glioma growth and increases survival compared with the control. The study of the mechanisms of this phenomenon revealed stronger effects of the PBM course in sleeping vs. awake rats on the stimulation of BD and an immune response against glioma, including an increase in the number of CD8+ in glioma cells, activation of apoptosis, and blockage of the proliferation of glioma cells. Our new technology for sleep-phototherapy opens a new strategy to improve the quality of medical care for patients with brain cancer, using promising smart-sleep and non-invasive approaches of glioma treatment.
Collapse
Affiliation(s)
- Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Ivan Fedosov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Egor Ilyukov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Dmitry Myagkov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Dmitry Tuktarov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Daria Zlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Arina Evsyukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Alexander Dubrovsky
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Matvey Tuzhilkin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Inna Elezarova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia
| | - Elena Saranceva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Tatyana Iskra
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Ekaterina Lykova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| |
Collapse
|
13
|
Al Masri M, Corell A, Michaëlsson I, Jakola AS, Skoglund T. The glymphatic system for neurosurgeons: a scoping review. Neurosurg Rev 2024; 47:61. [PMID: 38253938 PMCID: PMC10803566 DOI: 10.1007/s10143-024-02291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
The discovery of the glymphatic system has revolutionized our understanding of cerebrospinal fluid (CSF) circulation and interstitial waste clearance in the brain. This scoping review aims to synthesize the current literature on the glymphatic system's role in neurosurgical conditions and its potential as a therapeutic target. We conducted a comprehensive search in PubMed and Scopus databases for studies published between January 1, 2012, and October 31, 2023. Studies were selected based on their relevance to neurosurgical conditions and glymphatic function, with both animal and human studies included. Data extraction focused on the methods for quantifying glymphatic function and the main results. A total of 67 articles were included, covering conditions such as idiopathic normal pressure hydrocephalus (iNPH), idiopathic intracranial hypertension (IIH), subarachnoid hemorrhage (SAH), stroke, intracranial tumors, and traumatic brain injury (TBI). Significant glymphatic dysregulation was noted in iNPH and IIH, with evidence of impaired CSF dynamics and delayed clearance. SAH studies indicated glymphatic dysfunction with the potential therapeutic effects of nimodipine and tissue plasminogen activator. In stroke, alterations in glymphatic activity correlated with the extent of edema and neurological recovery. TBI studies highlighted the role of the glymphatic system in post-injury cognitive outcomes. Results indicate that the regulation of aquaporin-4 (AQP4) channels is a critical target for therapeutic intervention. The glymphatic system plays a critical role in the pathophysiology of various neurosurgical conditions, influencing brain edema and CSF dynamics. Targeting the regulation of AQP4 channels presents as a significant therapeutic strategy. Although promising, the translation of these findings into clinical practice requires further human studies. Future research should focus on establishing non-invasive biomarkers for glymphatic function and exploring the long-term effects of glymphatic dysfunction.
Collapse
Affiliation(s)
- Mohammad Al Masri
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Isak Michaëlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Thomas Skoglund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden.
| |
Collapse
|
14
|
Fei X, Wu J, Tian H, Jiang D, Chen H, Yan K, Wang Y, Zhao Y, Chen H, Xie X, Wang Z, Zhu W, Huang Q. Glioma stem cells remodel immunotolerant microenvironment in GBM and are associated with therapeutic advancements. Cancer Biomark 2024; 41:1-24. [PMID: 39240627 PMCID: PMC11492047 DOI: 10.3233/cbm-230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment, necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging or "cold" tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Haiyan Tian
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of GCP, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ke Yan
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhu
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Qiang Huang
- Department of Neurosurgery, Second Affiliated Hospital of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Lin H, Li D, Zhu J, Liu S, Li J, Yu T, Tuchin VV, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation for brain diseases: review of animal and human studies including mechanisms and emerging trends. NEUROPHOTONICS 2024; 11:010601. [PMID: 38317779 PMCID: PMC10840571 DOI: 10.1117/1.nph.11.1.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.
Collapse
Affiliation(s)
- Hao Lin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
- Huazhong University of Science and Technology, School of Optical Electronic Information, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Jingting Li
- Huazhong University of Science and Technology, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Valery V. Tuchin
- Saratov State University, Science Medical Center, Saratov, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow, Russia
- Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Science Medical Center, Saratov, Russia
- Humboldt University, Department of Physics, Berlin, Germany
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
16
|
Semyachkina-Glushkovskaya O, Fedosov I, Zaikin A, Ageev V, Ilyukov E, Myagkov D, Tuktarov D, Blokhina I, Shirokov A, Terskov A, Zlatogorskaya D, Adushkina V, Evsukova A, Dubrovsky A, Tsoy M, Telnova V, Manzhaeva M, Dmitrenko A, Krupnova V, Kurths J. Technology of the photobiostimulation of the brain's drainage system during sleep for improvement of learning and memory in male mice. BIOMEDICAL OPTICS EXPRESS 2024; 15:44-58. [PMID: 38223185 PMCID: PMC10783921 DOI: 10.1364/boe.505618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
In this study on healthy male mice using confocal imaging of dye spreading in the brain and its further accumulation in the peripheral lymphatics, we demonstrate stronger effects of photobiomodulation (PBM) on the brain's drainage system in sleeping vs. awake animals. Using the Pavlovian instrumental transfer probe and the 2-objects-location test, we found that the 10-day course of PBM during sleep vs. wakefulness promotes improved learning and spatial memory in mice. For the first time, we present the technology for PBM under electroencephalographic (EEG) control that incorporates modern state of the art facilities of optoelectronics and biopotential detection and that can be built of relatively cheap and commercially available components. These findings open a new niche in the development of smart technologies for phototherapy of brain diseases during sleep.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Ivan Fedosov
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexey Zaikin
- Department of Mathematics and Institute for Women's Health, University College London, 25 Gordon Street, London, WC1H 0AY, UK
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, building 4, 119435 Moscow, Russia
- Institute for Cognitive Neuroscience, University Higher School of Economics, Moscow, Russia
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Vasily Ageev
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Egor Ilyukov
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Dmitry Myagkov
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Dmitry Tuktarov
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Tsoy
- Institute of Physics, Saratov State University Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Jürgen Kurths
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, building 4, 119435 Moscow, Russia
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
17
|
Zhu H, Xie Y, Li L, Liu Y, Li S, Shen N, Zhang J, Yan S, Liu D, Li Y, Zhu W. Diffusion along the perivascular space as a potential biomarker for glioma grading and isocitrate dehydrogenase 1 mutation status prediction. Quant Imaging Med Surg 2023; 13:8259-8273. [PMID: 38106240 PMCID: PMC10721998 DOI: 10.21037/qims-23-541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
Background The diffusion tensor image analysis along the perivascular space (DTI-ALPS) may have the potential to reflect glymphatic dysfunction in patients with glioma. The study aimed to determine the correlation of DTI-ALPS with glioma grade and isocitrate dehydrogenase 1 (IDH1) genotype and to then compare the ALPS index with other diffusion metrics. Methods In this study, 81 patients with glioma and 31 healthy controls underwent magnetic resonance imaging (MRI) examination. The ALPS-index, fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) were calculated. Comparisons were made between the left and right hemispheres and between patients and controls. IDH1 status was compared after age adjustment. The diagnostic performance of each metric was assessed via receiver operating characteristic (ROC) analysis. Results In patients with glioma, the ALPS-index of the hemisphere ipsilateral to glioma was significantly lower than that of the hemisphere contralateral to glioma (1.417±0.177 vs. 1.478±0.165; P=0.002), and the bilateral ALPS-index values in patients were significantly decreased compared with those in healthy controls. The ALPS-index was significantly higher in lower-grade gliomas (LrGGs) than that in glioblastomas (GBMs) (1.495±0.151 vs. 1.320±0.159; P<0.001) and was significantly lower in IDH1-wild-type LrGGs than in IDH1-mutant LrGGs (1.400±0.185 vs. 1.530±0.123; P=0.036). FA, MD, and MK also showed significant differences between LrGGs and GBMs and between IDH1-mutant and IDH1-wild-type LrGGs (P<0.05). Furthermore, the combination of the ALPS-index with FA, MD, or MK, exhibited superior discrimination ability compared to each metric used alone. The ALPS-index combined with MD had the highest area under the curve (AUC) of 0.854 as compared to that of 0.614-0.807 for a single metric in glioma grading, while for IDH1 mutation prediction, this combination had the highest AUC of 0.861 as compared to that of 0.707-0.778 for a single metric. Conclusions The reduced ALPS-index may reflect tumor-induced glymphatic system impairment, and the ALPS-index may be able to complement conventional diffusion metrics in glioma grading and IDH1 genotyping.
Collapse
Affiliation(s)
- Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Wang Z, Wang B, Li Z, Han G, Meng C, Jiao B, Guo K, Hsu YC, Sun Y, Liu Y, Bai R. The Consistence of Dynamic Contrast-Enhanced MRI and Filter-Exchange Imaging in Measuring Water Exchange Across the Blood-Brain Barrier in High-Grade Glioma. J Magn Reson Imaging 2023; 58:1850-1860. [PMID: 37021659 DOI: 10.1002/jmri.28729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Water exchange across blood-brain barrier (BBB) (WEXBBB ) is an emerging biomarker of BBB dysfunction with potential applications in many brain diseases. Several MRI methods have been proposed to measure WEXBBB , but evidence remains scarce whether different methods can produce comparable WEXBBB . PURPOSE To explore whether dynamic contrast-enhanced (DCE)-MRI and vascular water exchange imaging (VEXI) could produce comparable WEXBBB in high-grade glioma (HGG) patients. STUDY TYPE Prospective cross-sectional. SUBJECTS 13 HGG patients (58.4 ± 9.4 years, 9 females, 4 WHO III and 9 WHO IV). FIELD STRENGTH/SEQUENCE A 3 T, spoiled gradient-recalled-echo DCE-MRI and VEXI containing two pulsed-gradient spin-echo blocks separated by a mixing block. ASSESSMENTS The enhanced tumor and contralateral normal-appearing white matter (cNAWM) volume-of-interests (VOIs) were drew by two neuroradiologists. And whole-brain NAWM and normal-appearing gray matter (NAGM) without tumor-affected regions were segmented by automated segmentation algorithm in FSL. STATISTICAL TESTS Student's t-test was used to evaluate parameters difference between cNAWM and tumor, NAGM and NAWM, respectively. The correlation between vascular water efflux rate constant (kbo ) from DCE-MRI and apparent exchange rate across BBB (AXRBBB ) from VEXI was evaluated by Pearson correlation. P < 0.05 was considered statistically significant. RESULTS Compared with cNAWM, both kbo and AXRBBB were significantly reduced in tumor (kbo = 3.50 ± 1.18 sec-1 vs. 1.03 ± 0.75 sec-1 ; AXRBBB = 3.54 ± 1.11 sec-1 vs. 1.94 ± 1.04 sec-1 ). Both kbo and AXRBBB showed significantly higher values in NAWM than NAGM (kbo = 3.50 ± 0.59 sec-1 vs. 2.10 ± 0.56 sec-1 ; AXRBBB = 3.35 ± 0.77 sec-1 vs. 2.07 ± 0.52 sec-1 ). The VOI-averaged kbo and AXRBBB were also linearly correlated in tumor, NAWM, and NAGM (r = 0.59). DATA CONCLUSION DCE-MRI and VEXI showed comparable and correlated WEXBBB in HGG patients, suggesting that the consistence and reliability of these two MRI methods in measuring WEXBBB . EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
- Zejun Wang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaoqing Li
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Guangxu Han
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Cheng Meng
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bingjie Jiao
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kaiyue Guo
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Yingchao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Kaur J, Ding G, Zhang L, Lu Y, Luo H, Li L, Boyd E, Li Q, Wei M, Zhang Z, Chopp M, Jiang Q. Imaging glymphatic response to glioblastoma. Cancer Imaging 2023; 23:107. [PMID: 37904254 PMCID: PMC10614361 DOI: 10.1186/s40644-023-00628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The glymphatic system actively exchanges cerebrospinal fluid (CSF) and interstitial fluid (ISF) to eliminate toxic interstitial waste solutes from the brain parenchyma. Impairment of the glymphatic system has been linked to several neurological conditions. Glioblastoma, also known as Glioblastoma multiforme (GBM) is a highly aggressive form of malignant brain cancer within the glioma category. However, the impact of GBM on the functioning of the glymphatic system has not been investigated. Using dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) and advanced kinetic modeling, we examined the changes in the glymphatic system in rats with GBM. METHODS Dynamic 3D contrast-enhanced T1-weighted imaging (T1WI) with intra-cisterna magna (ICM) infusion of paramagnetic Gd-DTPA contrast agent was used for MRI glymphatic measurements in both GBM-induced and control rats. Glymphatic flow in the whole brain and the olfactory bulb was analyzed using model-derived parameters of arrival time, infusion rate, clearance rate, and residual that describe the dynamics of CSF tracer over time. RESULTS 3D dynamic T1WI data identified reduced glymphatic influx and clearance, indicating an impaired glymphatic system due to GBM. Kinetic modeling and quantitative analyses consistently indicated significantly reduced infusion rate, clearance rate, and increased residual of CSF tracer in GBM rats compared to control rats, suggesting restricted glymphatic flow in the brain with GBM. In addition, our results identified compromised perineural pathway along the optic nerves in GBM rats. CONCLUSIONS Our study demonstrates the presence of GBM-impaired glymphatic response in the rat brain and impaired perineural pathway along the optic nerves. Reduced glymphatic waste clearance may lead to the accumulation of toxic waste solutes and pro-inflammatory signaling molecules which may affect the progression of the GBM.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
| | - Yong Lu
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Edward Boyd
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Min Wei
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.
- Department of Physics, Oakland University, Rochester, MI, USA.
- Department of Radiology, Michigan State University, Lasing, MI, USA.
- Department of Neurology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
20
|
Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Saceleanu VM. The Brain's Glymphatic System: Drawing New Perspectives in Neuroscience. Brain Sci 2023; 13:1005. [PMID: 37508938 PMCID: PMC10377460 DOI: 10.3390/brainsci13071005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This paper delves into the intricate structure and functionality of the brain's glymphatic system, bringing forth new dimensions in its neuroscientific understanding. This paper commences by exploring the cerebrospinal fluid (CSF)-its localization, production, and pivotal role within the central nervous system, acting as a cushion and vehicle for nutrient distribution and waste elimination. We then transition into an in-depth study of the morphophysiological aspects of the glymphatic system, a recent discovery revolutionizing the perception of waste clearance from the brain, highlighting its lymphatic-like characteristics and remarkable operations. This paper subsequently emphasizes the glymphatic system's potential implications in Alzheimer's disease (AD), discussing the connection between inefficient glymphatic clearance and AD pathogenesis. This review also elucidates the intriguing interplay between the glymphatic system and the circadian rhythm, illustrating the optimal functioning of glymphatic clearance during sleep. Lastly, we underscore the hitherto underappreciated involvement of the glymphatic system in the tumoral microenvironment, potentially impacting tumor growth and progression. This comprehensive paper accentuates the glymphatic system's pivotal role in multiple domains, fostering an understanding of the brain's waste clearance mechanisms and offering avenues for further research into neuropathological conditions.
Collapse
Affiliation(s)
- Alexandru Vlad Ciurea
- Neurosurgery Department, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania
- Department of Neurosurgery, Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | | | - Horia Petre Costin
- Neurosurgery Department, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania
- Department of Neurosurgery, "Lucian Blaga" University of Medicine, 550024 Sibiu, Romania
| |
Collapse
|
21
|
Tewarie IA, Senko AW, Jessurun CAC, Zhang AT, Hulsbergen AFC, Rendon L, McNulty J, Broekman MLD, Peng LC, Smith TR, Phillips JG. Predicting leptomeningeal disease spread after resection of brain metastases using machine learning. J Neurosurg 2023; 138:1561-1569. [PMID: 36272119 DOI: 10.3171/2022.8.jns22744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The incidence of leptomeningeal disease (LMD) has increased as treatments for brain metastases (BMs) have improved and patients with metastatic disease are living longer. Sample sizes of individual studies investigating LMD after surgery for BMs and its risk factors have been limited, ranging from 200 to 400 patients at risk for LMD, which only allows the use of conventional biostatistics. Here, the authors used machine learning techniques to enhance LMD prediction in a cohort of surgically treated BMs. METHODS A conditional survival forest, a Cox proportional hazards model, an extreme gradient boosting (XGBoost) classifier, an extra trees classifier, and logistic regression were trained. A synthetic minority oversampling technique (SMOTE) was used to train the models and handle the inherent class imbalance. Patients were divided into an 80:20 training and test set. Fivefold cross-validation was used on the training set for hyperparameter optimization. Patients eligible for study inclusion were adults who had consecutively undergone neurosurgical BM treatment, had been admitted to Brigham and Women's Hospital from January 2007 through December 2019, and had a minimum of 1 month of follow-up after neurosurgical treatment. RESULTS A total of 1054 surgically treated BM patients were included in this analysis. LMD occurred in 168 patients (15.9%) at a median of 7.05 months after BM diagnosis. The discrimination of LMD occurrence was optimal using an XGboost algorithm (area under the curve = 0.83), and the time to LMD was prognosticated evenly by the random forest algorithm and the Cox proportional hazards model (C-index = 0.76). The most important feature for both LMD classification and regression was the BM proximity to the CSF space, followed by a cerebellar BM location. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest risk factors for both LMD occurrence and time to LMD. CONCLUSIONS The outcomes of LMD patients in the BM population are predictable using SMOTE and machine learning. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest LMD risk factors.
Collapse
Affiliation(s)
- Ishaan Ashwini Tewarie
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Alexander W Senko
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charissa A C Jessurun
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Abigail Tianai Zhang
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexander F C Hulsbergen
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Luis Rendon
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jack McNulty
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marike L D Broekman
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 4Department of Neurosurgery, Leiden Medical Center, Leiden, The Netherlands; and
| | - Luke C Peng
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy R Smith
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - John G Phillips
- 1Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- 5Department of Radiation Oncology, Tennessee Oncology, Nashville, Tennessee
| |
Collapse
|
22
|
Mee-Inta O, Hsieh CF, Chen DQ, Fan CH, Chiang YY, Liu CC, Sze CI, Gean PW, Wu PC, Yang MS, Huang PS, Chieh Wu P, Kuo YM, Huang CC. High-frequency ultrasound imaging for monitoring the function of meningeal lymphatic system in mice. ULTRASONICS 2023; 131:106949. [PMID: 36773481 DOI: 10.1016/j.ultras.2023.106949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/30/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The meningeal lymphatic system drains the cerebrospinal fluid from the subarachnoid space to the cervical lymphatic system, primarily to the deep cervical lymph nodes. Perturbations of the meningeal lymphatic system have been linked to various neurologic disorders. A method to specifically monitor the flow of meningeal lymphatic system in real time is unavailable. In the present study, we adopted the high-frequency ultrasound (HFUS) with 1,1'diocatadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-loaded microbubble and FePt@PLGA nanoparticle contrast agents to evaluate the flow of the meningeal lymphatic system in 2-month-old mice. Statistical analysis was performed to identify changes of HFUS signals among the microbubbles, FePt@PLGA nanoparticles, and saline control groups. Approximately 15 min from the start of intracerebroventricular injection of contrast agents, their signals were evident at the deep cervical lymph nodes and lasted for at least 60 min. These signals were validated on the basis of the presence of DiI and Fe signals in the deep cervical lymph nodes. Ligation of afferent lymphatic vessels to the deep cervical lymph nodes eliminated the HFUS signals. Moreover, ablation of lymphatic vessels near the confluence of sinuses decreased the HFUS signals in the deep cervical lymph nodes. Glioma-bearing mice that exhibited reduced lymphatic vessel immunostaining signals near the confluence of sinuses had lowered HFUS signals in the deep cervical lymph nodes within 60 min. The proposed method provides a minimally invasive approach to monitor the qualities of the meningeal lymphatic system in real time as well as the progression of the meningeal lymphatic system in various brain disease animal models.
Collapse
Affiliation(s)
- Onanong Mee-Inta
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Fang Hsieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - De-Quan Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yi Chiang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chan-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chun-I Sze
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Ching Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan; Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Mon-Shieh Yang
- College of Science, National Cheng Kung University, Tainan, Taiwan
| | - Po-Sheng Huang
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
23
|
Eide PK, Lashkarivand A, Pripp A, Valnes LM, Hovd MH, Ringstad G, Blennow K, Zetterberg H. Plasma neurodegeneration biomarker concentrations associate with glymphatic and meningeal lymphatic measures in neurological disorders. Nat Commun 2023; 14:2084. [PMID: 37045847 PMCID: PMC10097687 DOI: 10.1038/s41467-023-37685-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Clearance of neurotoxic brain proteins via cerebrospinal fluid (CSF) to blood has recently emerged to be crucial, and plasma biomarkers of neurodegeneration were newly introduced to predict neurological disease. This study examines in 106 individuals with neurological disorders associations between plasma biomarkers [40 and 42 amino acid-long amyloid-β (Aβ40 and Aβ42), total-tau, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL)] and magnetic resonance imaging measures of CSF-mediated clearance from brain via extra-vascular pathways (proxy of glymphatic function) and CSF-to-blood clearance variables from pharmacokinetic modeling (proxy of meningeal lymphatic egress). We also examine how biomarkers vary during daytime and associate with subjective sleep quality. Plasma concentrations of neurodegeneration markers associate with indices of glymphatic and meningeal lymphatic functions in individual- and disease-specific manners, vary during daytime, but are unaffected by sleep quality. The results suggest that plasma concentrations of neurodegeneration biomarkers associate with measures of glymphatic and meningeal lymphatic function.
Collapse
Affiliation(s)
- Per Kristian Eide
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Aslan Lashkarivand
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lars Magnus Valnes
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Dept. of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
24
|
Semyachkina-Glushkovskaya O, Bragin D, Bragina O, Socolovski S, Shirokov A, Fedosov I, Ageev V, Blokhina I, Dubrovsky A, Telnova V, Terskov A, Khorovodov A, Elovenko D, Evsukova A, Zhoy M, Agranovich I, Vodovozova E, Alekseeva A, Kurths J, Rafailov E. Low-Level Laser Treatment Induces the Blood-Brain Barrier Opening and the Brain Drainage System Activation: Delivery of Liposomes into Mouse Glioblastoma. Pharmaceutics 2023; 15:567. [PMID: 36839889 PMCID: PMC9966329 DOI: 10.3390/pharmaceutics15020567] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM). The LLLT induces the generation of singlet oxygen without photosensitizers (PSs) in the blood endothelial cells and astrocytes, which can be a trigger mechanism of BBBO. LLLT-BBBO causes activation of the ABC-transport system with a temporal decrease in the expression of tight junction proteins. The BBB recovery is accompanied by activation of neuronal metabolic activity and stabilization of the BBB permeability. LLLT-BBBO can be used as a new opportunity of interstitial PS-free photodynamic therapy (PDT) for modulation of brain tumor immunity and improvement of immuno-therapy for GBM in infants in whom PDT with PSs, radio- and chemotherapy are strongly limited, as well as in adults with a high allergic reaction to PSs.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| | - Sergey Socolovski
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Vasily Ageev
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Khorovodov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Daria Elovenko
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Zhoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Ilana Agranovich
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Jürgen Kurths
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Potsdam Institute for Climate Impact Research, Department of Complexity Science, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
25
|
Brain Waste Removal System and Sleep: Photobiomodulation as an Innovative Strategy for Night Therapy of Brain Diseases. Int J Mol Sci 2023; 24:ijms24043221. [PMID: 36834631 PMCID: PMC9965491 DOI: 10.3390/ijms24043221] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Emerging evidence suggests that an important function of the sleeping brain is the removal of wastes and toxins from the central nervous system (CNS) due to the activation of the brain waste removal system (BWRS). The meningeal lymphatic vessels (MLVs) are an important part of the BWRS. A decrease in MLV function is associated with Alzheimer's and Parkinson's diseases, intracranial hemorrhages, brain tumors and trauma. Since the BWRS is activated during sleep, a new idea is now being actively discussed in the scientific community: night stimulation of the BWRS might be an innovative and promising strategy for neurorehabilitation medicine. This review highlights new trends in photobiomodulation of the BWRS/MLVs during deep sleep as a breakthrough technology for the effective removal of wastes and unnecessary compounds from the brain in order to increase the neuroprotection of the CNS as well as to prevent or delay various brain diseases.
Collapse
|
26
|
Lan YL, Wang H, Chen A, Zhang J. Update on the current knowledge of lymphatic drainage system and its emerging roles in glioma management. Immunology 2023; 168:233-247. [PMID: 35719015 DOI: 10.1111/imm.13517] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
The draining of brain interstitial fluid (ISF) to cerebrospinal fluid (CSF) and the subsequent draining of CSF to meningeal lymphatics is well-known. Nonetheless, its role in the development of glioma is a remarkable finding that has to be extensively understood. The glymphatic system (GS) collects CSF from the subarachnoid space and brain ISF through aquaporin-4 (AQP4) water channels. The glial limiting membrane and the perivascular astrocyte-end-feet membrane both have elevated levels of AQP4. CSF is thought to drain through the nerve sheaths of the olfactory and other cranial nerves as well as spinal meningeal lymphatics via dorsal or basal lymphatic vessels. Meningeal lymphatic vessels (MLVs) exist below the skull in the dorsal and basal regions. In this view, MLVs offer a pathway to drain macromolecules and traffic immunological cells from the CNS into cervical lymph nodes (CLNs), and thus can be used as a candidate curing strategy against glioma and other associated complications, such as neuro-inflammation. Taken together, the lymphatic drainage system could provide a route or approach for drug targeting of glioma and other neurological conditions. Nevertheless, its pathophysiological role in glioma remains elusive, which needs extensive research. The current review aims to explore the lymphatic drainage system, its role in glioma progression, and possible therapeutic techniques that target MLVs in the CNS.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjin Wang
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aiqin Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Ben-Nejma IRH, Keliris AJ, Vanreusel V, Ponsaerts P, Van der Linden A, Keliris GA. Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis. Alzheimers Res Ther 2023; 15:23. [PMID: 36707887 PMCID: PMC9883946 DOI: 10.1186/s13195-023-01175-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable neurodegenerative disorder characterised by the progressive buildup of toxic amyloid-beta (Aβ) and tau protein aggregates eventually leading to cognitive decline. Recent lines of evidence suggest that an impairment of the glymphatic system (GS), a brain waste clearance pathway, plays a key role in the pathology of AD. Moreover, a relationship between GS function and neuronal network integrity has been strongly implicated. Here, we sought to assess the efficacy of the GS in a transgenic Tet-Off APP mouse model of amyloidosis, in which the expression of mutant APP was delayed until maturity, mimicking features of late-onset AD-the most common form of dementia in humans. METHODS To evaluate GS function, we used dynamic contrast-enhanced MRI (DCE-MRI) in 14-month-old Tet-Off APP (AD) mice and aged-matched littermate controls. Brain-wide transport of the Gd-DOTA contrast agent was monitored over time after cisterna magna injection. Region-of-interest analysis and computational modelling were used to assess GS dynamics while characterisation of brain tissue abnormalities at the microscale was performed ex vivo by immunohistochemistry. RESULTS We observed reduced rostral glymphatic flow and higher accumulation of the contrast agent in areas proximal to the injection side in the AD group. Clustering and subsequent computational modelling of voxel time courses revealed significantly lower influx time constants in AD relative to the controls. Ex vivo evaluation showed abundant amyloid plaque burden in the AD group coinciding with extensive astrogliosis and microgliosis. The neuroinflammatory responses were also found in plaque-devoid regions, potentially impacting brain-fluid circulation. CONCLUSIONS In a context resembling late-onset AD in humans, we demonstrate the disruption of glymphatic function and particularly a reduction in brain-fluid influx in the AD group. We conjecture that the hindered circulation of cerebrospinal fluid is potentially caused by wide-spread astrogliosis and amyloid-related obstruction of the normal routes of glymphatic flow resulting in redirection towards caudal regions. In sum, our study highlights the translational potential of alternative approaches, such as targeting brain-fluid circulation as potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Inès R. H. Ben-Nejma
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Aneta J. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Verdi Vanreusel
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium ,Research in Dosimetric Applications, SCK CEN, Boeretang 200, Mol, 2400 Antwerp, Belgium
| | - Peter Ponsaerts
- grid.5284.b0000 0001 0790 3681Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Annemie Van der Linden
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.4834.b0000 0004 0635 685XInstitute of Computer Science, Foundation for Research and Technology – Hellas (FORTH), Heraklion, Crete Greece
| |
Collapse
|
28
|
The Tumor Immune Microenvironment in Primary CNS Neoplasms: A Review of Current Knowledge and Therapeutic Approaches. Int J Mol Sci 2023; 24:ijms24032020. [PMID: 36768342 PMCID: PMC9917056 DOI: 10.3390/ijms24032020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Primary CNS neoplasms are responsible for considerable mortality and morbidity, and many therapies directed at primary brain tumors have proven unsuccessful despite their success in preclinical studies. Recently, the tumor immune microenvironment has emerged as a critical aspect of primary CNS neoplasms that may affect their malignancy, prognosis, and response to therapy across patients and tumor grades. This review covers the tumor microenvironment of various primary CNS neoplasms, with a focus on glioblastoma and meningioma. Additionally, current therapeutic strategies based on elements of the tumor microenvironment, including checkpoint inhibitor therapy and immunotherapeutic vaccines, are discussed.
Collapse
|
29
|
Semyachkina-Glushkovskaya O, Shirokov A, Blokhina I, Telnova V, Vodovozova E, Alekseeva A, Boldyrev I, Fedosov I, Dubrovsky A, Khorovodov A, Terskov A, Evsukova A, Elovenko D, Adushkina V, Tzoy M, Agranovich I, Kurths J, Rafailov E. Intranasal Delivery of Liposomes to Glioblastoma by Photostimulation of the Lymphatic System. Pharmaceutics 2022; 15:pharmaceutics15010036. [PMID: 36678667 PMCID: PMC9867158 DOI: 10.3390/pharmaceutics15010036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) limits the delivery of majority of cancer drugs and thereby complicates brain tumor treatment. The nasal-brain-lymphatic system is discussed as a pathway for brain drug delivery overcoming the BBB. However, in most cases, this method is not sufficient to achieve a therapeutic effect due to brain drug delivery in a short distance. Therefore, it is necessary to develop technologies to overcome the obstacles facing nose-to-brain delivery of promising pharmaceuticals. In this study, we clearly demonstrate intranasal delivery of liposomes to the mouse brain reaching glioblastoma (GBM). In the experiments with ablation of the meningeal lymphatic network, we report an important role of meningeal pathway for intranasal delivery of liposomes to the brain. Our data revealed that GBM is characterized by a dramatic reduction of intranasal delivery of liposomes to the brain that was significantly improved by near-infrared (1267 nm) photostimulation of the lymphatic vessels in the area of the cribriform plate and the meninges. These results open new perspectives for non-invasive improvement of efficiency of intranasal delivery of cancer drugs to the brain tissues using nanocarriers and near-infrared laser-based therapeutic devices, which are commercially available and widely used in clinical practice.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ivan Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexandr Khorovodov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Daria Elovenko
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Ilana Agranovich
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Jürgen Kurths
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
30
|
Semyachkina-Glushkovskaya O, Karavaev A, Prokhorov M, Runnova A, Borovkova E, Yu.M. I, Hramkov A, Kulminskiy D, Semenova N, Sergeev K, Slepnev A, Yu. SE, Zhuravlev M, Fedosov I, Shirokov A, Blokhina I, Dubrovski A, Terskov A, Khorovodov A, Ageev V, Elovenko D, Evsukova A, Adushkina V, Telnova V, Postnov D, Penzel T, Kurths J. EEG biomarkers of activation of the lymphatic drainage system of the brain during sleep and opening of the blood-brain barrier. Comput Struct Biotechnol J 2022; 21:758-768. [PMID: 36698965 PMCID: PMC9841170 DOI: 10.1016/j.csbj.2022.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The lymphatic drainage system of the brain (LDSB) is the removal of metabolites and wastes from its tissues. A dysfunction of LDSB is an important sign of aging, brain oncology, the Alzheimer's and Parkinson's diseases. The development of new strategies for diagnosis of LDSB injuries can improve prevention of age-related cerebral amyloid angiopathy, neurodegenerative and cerebrovascular diseases. There are two conditions, such as deep sleep and opening of the blood-brain-barrier (OBBB) associated with the LDSB activation. A promising candidate for measurement of LDSB could be electroencephalography (EEG). In this pilot study on rats, we tested the hypothesis, whether deep sleep and OBBB can be an informative platform for an effective extracting of information about the LDSB functions. Using the nonlinear analysis of EEG dynamics and machine learning technology, we discovered that the LDSB activation during OBBB and sleep is associated with similar changes in the EEG θ-activity. The OBBB causes the higher LDSB activation vs. sleep that is accompanied by specific changes in the low frequency EEG activity extracted by the power spectra analysis of the EEG dynamics combined with the coherence function. Thus, our findings demonstrate a link between neural activity associated with the LDSB activation during sleep and OBBB that is an important informative platform for extraction of the EEG-biomarkers of the LDSB activity. These results open new perspectives for the development of technology for the LDSB diagnostics that would open a novel era in the prognosis of brain diseases caused by the LDSB disorders, including OBBB.
Collapse
Affiliation(s)
- O.V. Semyachkina-Glushkovskaya
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany,Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Corresponding author at: Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany.
| | - A.S. Karavaev
- Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov Branchof the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya, 38, Saratov, 410019, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia,Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, (IHNA&NPh RAS), 5AButlerova St., Moscow 117485, Russia
| | - M.D. Prokhorov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov Branchof the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya, 38, Saratov, 410019, Russia
| | - A.E. Runnova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - E.I. Borovkova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - Ishbulatov Yu.M.
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov Branchof the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya, 38, Saratov, 410019, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - A.N. Hramkov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - D.D. Kulminskiy
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - N.I. Semenova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - K.S. Sergeev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.V. Slepnev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Sitnikova E. Yu.
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, (IHNA&NPh RAS), 5AButlerova St., Moscow 117485, Russia
| | - M.O. Zhuravlev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - I.V. Fedosov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.A. Shirokov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, ProspektEntuziastov13, Saratov 410049, Russia
| | - I.A. Blokhina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.I. Dubrovski
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.V. Terskov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.P. Khorovodov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - V.B. Ageev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - D.A. Elovenko
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.S. Evsukova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - V.V. Adushkina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - V.V. Telnova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - D.E. Postnov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - T.U. Penzel
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - J.G. Kurths
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany,Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
31
|
Xiang T, Feng D, Zhang X, Chen Y, Wang H, Liu X, Gong Z, Yuan J, Liu M, Sha Z, Lv C, Jiang W, Nie M, Fan Y, Wu D, Dong S, Feng J, Ponomarev ED, Zhang J, Jiang R. Effects of increased intracranial pressure on cerebrospinal fluid influx, cerebral vascular hemodynamic indexes, and cerebrospinal fluid lymphatic efflux. J Cereb Blood Flow Metab 2022; 42:2287-2302. [PMID: 35962479 PMCID: PMC9670008 DOI: 10.1177/0271678x221119855] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
The glymphatic-lymphatic fluid transport system (GLFTS) consists of glymphatic pathway and cerebrospinal fluid (CSF) lymphatic outflow routes, allowing biological liquids from the brain parenchyma to access the CSF along with perivascular space and to be cleaned out of the skull through lymphatic vessels. It is known that increased local pressure due to physical compression of tissue improves lymphatic transport in peripheral organs, but little is known about the exact relationship between increased intracranial pressure (IICP) and GLFTS. In this study, we verify our hypothesis that IICP significantly impacts GLFTS, and this effect depends on severity of the IICP. Using a previously developed inflating balloon model to induce IICP and inject fluorescent tracers into the cisterna magna, we found significant impairment of the glymphatic circulation after IICP. We further found that cerebrovascular occlusion occurred, and cerebrovascular pulsation decreased after IICP. IICP also interrupted the drainage of deep cervical lymph nodes and dorsal meningeal lymphatic function, enhancing spinal lymphatic outflow to the sacral lymph nodes. Notably, these effects were associated with the severity of IICP. Thus, our findings proved that the intensity of IICP significantly impacts GLFTS. This may have translational applications for preventing and treating related neurological disorders.
Collapse
Affiliation(s)
- Tangtang Xiang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Dongyi Feng
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Xinjie Zhang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Hanhua Wang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Zhitao Gong
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin
University, Changchun, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Yibing Fan
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Di Wu
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Jiancheng Feng
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| |
Collapse
|
32
|
Bissenas A, Fleeting C, Patel D, Al-Bahou R, Patel A, Nguyen A, Woolridge M, Angelle C, Lucke-Wold B. CSF Dynamics: Implications for Hydrocephalus and Glymphatic Clearance. CURRENT RESEARCH IN MEDICAL SCIENCES 2022; 1:24-42. [PMID: 36649460 PMCID: PMC9840530 DOI: 10.56397/crms.2022.12.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Beyond its neuroprotective role, CSF functions to rid the brain of toxic waste products through glymphatic clearance. Disturbances in the circulation of CSF and glymphatic exchange are common among those experiencing HCP syndrome, which often results from SAH. Normally, the secretion of CSF follows a two-step process, including filtration of plasma followed by the introduction of ions, bicarbonate, and water. Arachnoid granulations are the main site of CSF absorption, although there are other influencing factors that affect this process. The pathway through which CSF is through to flow is from its site of secretion, at the choroid plexus, to its site of absorption. However, the CSF flow dynamics are influenced by the cardiovascular system and interactions between CSF and CNS anatomy. One, two, and three-dimensional models are currently methods researchers use to predict and describe CSF flow, both under normal and pathological conditions. They are, however, not without their limitations. "Rest-of-body" models, which consider whole-body compartments, may be more effective for understanding the disruption to CSF flow due to hemorrhages and hydrocephalus. Specifically, SAH is thought to prevent CSF flow into the basal cistern and paravascular spaces. It is also more subject to backflow, caused by the presence of coagulation cascade products. In regard to the fluid dynamics of CSF, scar tissue, red blood cells, and protein content resulting from SAH may contribute to increased viscosity, decreased vessel diameter, and increased vessel resistance. Outside of its direct influence on CSF flow, SAH may result in one or both forms of hydrocephalus, including noncommunicating (obstructive) and communicating (nonobstructive) HCP. Imaging modalities such as PC-MRI, Time-SLIP, and CFD model, a mathematical model relying on PC-MRI data, are commonly used to better understand CSF flow. While PC-MRI utilizes phase shift data to ultimately determine CSF speed and flow, Time-SLIP compares signals generated by CSF to background signals to characterizes complex fluid dynamics. Currently, there are gaps in sufficient CSF flow models and imaging modalities. A prospective area of study includes generation of models that consider "rest-of-body" compartments and elements like arterial pulse waves, respiratory waves, posture, and jugular venous posture. Going forward, imaging modalities should work to focus more on patients in nature in order to appropriately assess how CSF flow is disrupted in SAH and HCP.
Collapse
Affiliation(s)
- Ashley Bissenas
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Chance Fleeting
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Drashti Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Raja Al-Bahou
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aashay Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Andrew Nguyen
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Maxwell Woolridge
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Conner Angelle
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Photodynamic Opening of the Blood-Brain Barrier and the Meningeal Lymphatic System: The New Niche in Immunotherapy for Brain Tumors. Pharmaceutics 2022; 14:pharmaceutics14122612. [PMID: 36559105 PMCID: PMC9784636 DOI: 10.3390/pharmaceutics14122612] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising add-on therapy to the current standard of care for patients with glioblastoma (GBM). The traditional explanation of the anti-cancer PDT effects involves the PDT-induced generation of a singlet oxygen in the GBM cells, which causes tumor cell death and microvasculature collapse. Recently, new vascular mechanisms of PDT associated with opening of the blood-brain barrier (OBBB) and the activation of functions of the meningeal lymphatic vessels have been discovered. In this review, we highlight the emerging trends and future promises of immunotherapy for brain tumors and discuss PDT-OBBB as a new niche and an important informative platform for the development of innovative pharmacological strategies for the modulation of brain tumor immunity and the improvement of immunotherapy for GBM.
Collapse
|
34
|
Semyachkina-Glushkovskaya O, Diduk S, Anna E, Elina D, Artem K, Khorovodov A, Shirokov A, Fedosov I, Dubrovsky A, Blokhina I, Terskov A, Navolokin N, Evsukova A, Elovenko D, Adushkina V, Kurths J. Music improves the therapeutic effects of bevacizumab in rats with glioblastoma: Modulation of drug distribution to the brain. Front Oncol 2022; 12:1010188. [PMID: 36313687 PMCID: PMC9606698 DOI: 10.3389/fonc.2022.1010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background The development of new methods for modulation of drug distribution across to the brain is a crucial step in the effective therapies for glioblastoma (GBM). In our previous work, we discovered the phenomenon of music-induced opening of the blood-brain barrier (OBBB) in healthy rodents. In this pilot study on rats, we clearly demonstrate that music-induced BBB opening improves the therapeutic effects of bevacizumab (BZM) in rats with GBM via increasing BZM distribution to the brain along the cerebral vessels. Methods The experiments were performed on Wistar male rats (200–250 g, n=161) using transfected C6-TagRFP cell line and the loud rock music for OBBB. The OBBB was assessed by spectrofluorometric assay of Evans Blue (EB) extravasation and confocal imaging of fluorescent BZM (fBZM) delivery into the brain. Additionally, distribution of fBZM and Omniscan in the brain was studied using fluorescent and magnetic resonance imaging (MRI), respectively. To analyze the therapeutic effects of BZM on the GBM growth in rats without and with OBBB, the GBM volume (MRI scans), as well as immunohistochemistry assay of proliferation (Ki67 marker) and apoptosis (Bax marker) in the GBM cells were studied. The Mann–Whitney–Wilcoxon test was used for all analysis, the significance level was p < 0.05, n=7 in each group. Results Our finding clearly demonstrates that music-induced OBBB increases the delivery of EB into the brain tissues and the extravasation of BZM into the brain around the cerebral vessels of rats with GBM. Music significantly increases distribution of tracers (fBZM and Omniscan) in the rat brain through the pathways of brain drainage system (perivascular and lymphatic), which are an important route of drug delivery into the brain. The music-induced OBBB improves the suppressive effects of BZM on the GBM volume and the cellular mechanisms of tumor progression that was accompanied by higher survival among rats in the GBM+BZM+Music group vs. other groups. Conclusion We hypothesized that music improves the therapeutic effects of BZM via OBBB in the normal cerebral vessels and lymphatic drainage of the brain tissues. This contributes better distribution of BZM in the brain fluids and among the normal cerebral vessels, which are used by GBM for invasion and co-opt existing vessels as a satellite tumor form. These results open the new perspectives for an improvement of therapeutic effects of BZM via the music-induced OBBB for BZM in the normal cerebral vessels, which are used by GBM for migration and progression.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Humboldt University, Institute of Physics, Berlin, Germany
- Deparment of Biology, Saratov State University, Saratov, Russia
- *Correspondence: Oxana Semyachkina-Glushkovskaya,
| | - Sergey Diduk
- Laboratory of Pharmaceutical Biotechnology, Pushchino State Institute of Natural Science, Pushchino, Russia
- Department of Biotechnology, Leeners LLС, Moscow, Russia
| | - Eroshova Anna
- Laboratory of Pharmaceutical Biotechnology, Pushchino State Institute of Natural Science, Pushchino, Russia
- Department of Biotechnology, Leeners LLС, Moscow, Russia
| | - Dosadina Elina
- Laboratory of Pharmaceutical Biotechnology, Pushchino State Institute of Natural Science, Pushchino, Russia
- Department of Biotechnology, Leeners LLС, Moscow, Russia
| | - Kruglov Artem
- Laboratory of Pharmaceutical Biotechnology, Pushchino State Institute of Natural Science, Pushchino, Russia
- Department of Biotechnology, Leeners LLС, Moscow, Russia
| | | | - Alexander Shirokov
- Deparment of Biology, Saratov State University, Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, Russia
| | - Ivan Fedosov
- Deparment of Biology, Saratov State University, Saratov, Russia
| | | | - Inna Blokhina
- Deparment of Biology, Saratov State University, Saratov, Russia
| | - Andrey Terskov
- Deparment of Biology, Saratov State University, Saratov, Russia
| | - Nikita Navolokin
- Deparment of Biology, Saratov State University, Saratov, Russia
- Department of Pathological Anatomy, Saratov Medical State University, Saratov, Russia
| | - Arina Evsukova
- Deparment of Biology, Saratov State University, Saratov, Russia
| | - Daria Elovenko
- Deparment of Biology, Saratov State University, Saratov, Russia
| | | | - Jürgen Kurths
- Humboldt University, Institute of Physics, Berlin, Germany
- Deparment of Biology, Saratov State University, Saratov, Russia
- Potsdam Institute for Climate Impact Research, Department of Complexity Science, Potsdam, Germany
| |
Collapse
|
35
|
Jatyan R, Singh P, Sahel DK, Karthik YG, Mittal A, Chitkara D. Polymeric and small molecule-conjugates of temozolomide as improved therapeutic agents for glioblastoma multiforme. J Control Release 2022; 350:494-513. [PMID: 35985493 DOI: 10.1016/j.jconrel.2022.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ), an imidazotetrazine, is a second-generation DNA alkylating agent used as a first-line treatment of glioblastoma multiforme (GBM). It was approved by FDA in 2005 and declared a blockbuster drug in 2008. Although TMZ has shown 100% oral bioavailability and crosses the blood-brain barrier effectively, however it suffers from limitations such as a short half-life (∼1.8 h), rapid metabolism, and lesser accumulation in the brain (∼10-20%). Additionally, development of chemoresistance has been associated with its use. Since it is a potential chemotherapeutic agent with an unmet medical need, advanced delivery strategies have been explored to overcome the associated limitations of TMZ. Nanocarriers including liposomes, solid lipid nanoparticles (SLNs), nanostructure lipid carriers (NLCs), and polymeric nanoparticles have demonstrated their ability to improve its circulation time, stability, tissue-specific accumulation, sustained release, and cellular uptake. Because of the appreciable water solubility of TMZ (∼5 mg/mL), the physical loading of TMZ in these nanocarriers is always challenging. Alternatively, the conjugation approach, wherein TMZ has been conjugated to polymers or small molecules, has been explored with improved outcomes in vitro and in vivo. This review emphasized the practical evidence of the conjugation strategy to improve the therapeutic potential of TMZ in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Reena Jatyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Y G Karthik
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
36
|
Liang J, Li T, Zhao J, Wang C, Sun H. Current understanding of the human microbiome in glioma. Front Oncol 2022; 12:781741. [PMID: 36003766 PMCID: PMC9393498 DOI: 10.3389/fonc.2022.781741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
There is mounting evidence that the human microbiome is highly associated with a wide variety of central nervous system diseases. However, the link between the human microbiome and glioma is rarely noticed. The exact mechanism of microbiota to affect glioma remains unclear. Recent studies have demonstrated that the microbiome may affect the development, progress, and therapy of gliomas, including the direct impacts of the intratumoral microbiome and its metabolites, and the indirect effects of the gut microbiome and its metabolites. Glioma-related microbiome (gut microbiome and intratumoral microbiome) is associated with both tumor microenvironment and tumor immune microenvironment, which ultimately influence tumorigenesis, progression, and responses to treatment. In this review, we briefly summarize current knowledge regarding the role of the glioma-related microbiome, focusing on its gut microbiome fraction and a brief description of the intratumoral microbiome, and put forward the prospects in which microbiome can be applied in the future and some challenges still need to be solved.
Collapse
Affiliation(s)
- Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajia Zhao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Haitao Sun,
| |
Collapse
|
37
|
Norton ES, Whaley LA, Ulloa-Navas MJ, García-Tárraga P, Meneses KM, Lara-Velazquez M, Zarco N, Carrano A, Quiñones-Hinojosa A, García-Verdugo JM, Guerrero-Cázares H. Glioblastoma disrupts the ependymal wall and extracellular matrix structures of the subventricular zone. Fluids Barriers CNS 2022; 19:58. [PMID: 35821139 PMCID: PMC9277938 DOI: 10.1186/s12987-022-00354-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive and common type of primary brain tumor in adults. Tumor location plays a role in patient prognosis, with tumors proximal to the lateral ventricles (LVs) presenting with worse overall survival, increased expression of stem cell genes, and increased incidence of distal tumor recurrence. This may be due in part to interaction of GBM with factors of the subventricular zone (SVZ), including those contained within the cerebrospinal fluid (CSF). However, direct interaction of GBM tumors with CSF has not been proved and would be hindered in the presence of an intact ependymal cell layer. Methods Here, we investigate the ependymal cell barrier and its derived extracellular matrix (ECM) fractones in the vicinity of a GBM tumor. Patient-derived GBM cells were orthotopically implanted into immunosuppressed athymic mice in locations distal and proximal to the LV. A PBS vehicle injection in the proximal location was included as a control. At four weeks post-xenograft, brain tissue was examined for alterations in ependymal cell health via immunohistochemistry, scanning electron microscopy, and transmission electron microscopy. Results We identified local invading GBM cells within the LV wall and increased influx of CSF into the LV-proximal GBM tumor bulk compared to controls. In addition to the physical disruption of the ependymal cell barrier, we also identified increased signs of compromised ependymal cell health in LV-proximal tumor-bearing mice. These signs include increased accumulation of lipid droplets, decreased cilia length and number, and decreased expression of cell channel proteins. We additionally identified elevated numbers of small fractones in the SVZ within this group, suggesting increased indirect CSF-contained molecule signaling to tumor cells. Conclusions Our data is the first to show that LV-proximal GBMs physically disrupt the ependymal cell barrier in animal models, resulting in disruptions in ependymal cell biology and increased CSF interaction with the tumor bulk. These findings point to ependymal cell health and CSF-contained molecules as potential axes for therapeutic targeting in the treatment of GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00354-8.
Collapse
Affiliation(s)
- Emily S Norton
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.,Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Lauren A Whaley
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.,Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - María José Ulloa-Navas
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Patricia García-Tárraga
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain
| | - Kayleah M Meneses
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain
| | - Hugo Guerrero-Cázares
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
38
|
Hovd MH, Mariussen E, Uggerud H, Lashkarivand A, Christensen H, Ringstad G, Eide PK. Population pharmacokinetic modeling of CSF to blood clearance: prospective tracer study of 161 patients under work-up for CSF disorders. Fluids Barriers CNS 2022; 19:55. [PMID: 35778719 PMCID: PMC9250213 DOI: 10.1186/s12987-022-00352-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Quantitative measurements of cerebrospinal fluid to blood clearance has previously not been established for neurological diseases. Possibly, variability in cerebrospinal fluid clearance may affect the underlying disease process and may possibly be a source of under- or over-dosage of intrathecally administered drugs. The aim of this study was to characterize the cerebrospinal fluid to blood clearance of the intrathecally administered magnetic resonance imaging contrast agent gadobutrol (Gadovist, Bayer Pharma AG, GE). For this, we established a population pharmacokinetic model, hypothesizing that cerebrospinal fluid to blood clearance differs between cerebrospinal fluid diseases. Methods Gadobutrol served as a surrogate tracer for extra-vascular pathways taken by several brain metabolites and drugs in cerebrospinal fluid. We estimated cerebrospinal fluid to blood clearance in patients with different cerebrospinal fluid disorders, i.e. symptomatic pineal and arachnoid cysts, as well as tentative spontaneous intracranial hypotension due to cerebrospinal fluid leakage, idiopathic intracranial hypertension, or different types of hydrocephalus (idiopathic normal pressure hydrocephalus, communicating- and non-communicating hydrocephalus). Individuals with no verified cerebrospinal fluid disturbance at clinical work-up were denoted references. Results Population pharmacokinetic modelling based on 1,140 blood samples from 161 individuals revealed marked inter-individual variability in pharmacokinetic profiles, including differences in absorption half-life (time to 50% of tracer absorbed from cerebrospinal fluid to blood), time to maximum concentration in blood and the maximum concentration in blood as well as the area under the plasma concentration time curve from zero to infinity. In addition, the different disease categories of cerebrospinal fluid diseases demonstrated different profiles. Conclusions The present observations of considerable variation in cerebrospinal fluid to blood clearance between individuals in general and across neurological diseases, may suggest that defining cerebrospinal fluid to blood clearance can become a useful diagnostic adjunct for work-up of cerebrospinal fluid disorders. We also suggest that it may become useful for assessing clearance capacity of endogenous brain metabolites from cerebrospinal fluid, as well as measuring individual cerebrospinal fluid to blood clearance of intrathecal drugs.
Collapse
Affiliation(s)
- Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Espen Mariussen
- Norwegian Institute for Air Research, Kjeller, Norway.,Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Hilde Uggerud
- Norwegian Institute for Air Research, Kjeller, Norway
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Pb 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Division of Radiology and Nuclear Medicine, Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Pb 4950 Nydalen, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
39
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Maloveská M, Humeník F, Vikartovská Z, Hudáková N, Almášiová V, Krešáková L, Čížková D. Brain Fluid Channels for Metabolite Removal. Physiol Res 2022; 71:199-208. [DOI: 10.33549/physiolres.934802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The adult human brain represents only 2 % of the body's total weight, however it is one of the most metabolically active organs in the mammalian body. Its high metabolic activity necessitates an efficacious waste clearance system. Besides the blood, there are two fluids closely linked to the brain and spinal cord drainage system: interstitial fluid (ISF) and cerebrospinal fluid (CSF). The aim of this review is to summarize the latest research clarifying the channels of metabolite removal by fluids from brain tissue, subarachnoid space (SAS) and brain dura (BD). Special attention is focused on lymphatic vascular structures in the brain dura, their localizations within the meninges, morphological properties and topographic anatomy. The review ends with an account of the consequences of brain lymphatic drainage failure. Knowledge of the physiological state of the clearance system is crucial in order to understand the changes related to impaired brain drainage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - D Čížková
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Slovak Republic.
| |
Collapse
|
41
|
Chen D, Le SB, Hutchinson TE, Calinescu AA, Sebastian M, Jin D, Liu T, Ghiaseddin A, Rahman M, Tran DD. Tumor Treating Fields dually activate STING and AIM2 inflammasomes to induce adjuvant immunity in glioblastoma. J Clin Invest 2022; 132:e149258. [PMID: 35199647 PMCID: PMC9012294 DOI: 10.1172/jci149258] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor Treating Fields (TTFields), an approved therapy for glioblastoma (GBM) and malignant mesothelioma, employ noninvasive application of low-intensity, intermediate-frequency, alternating electric fields to disrupt the mitotic spindle, leading to chromosome missegregation and apoptosis. Emerging evidence suggests that TTFields may also induce inflammation. However, the mechanism underlying this property and whether it can be harnessed therapeutically are unclear. Here, we report that TTFields induced focal disruption of the nuclear envelope, leading to cytosolic release of large micronuclei clusters that intensely recruited and activated 2 major DNA sensors - cyclic GMP-AMP synthase (cGAS) and absent in melanoma 2 (AIM2) - and their cognate cGAS/stimulator of interferon genes (STING) and AIM2/caspase 1 inflammasomes to produce proinflammatory cytokines, type 1 interferons (T1IFNs), and T1IFN-responsive genes. In syngeneic murine GBM models, TTFields-treated GBM cells induced antitumor memory immunity and a cure rate of 42% to 66% in a STING- and AIM2-dependent manner. Using single-cell and bulk RNA sequencing of peripheral blood mononuclear cells, we detected robust post-TTFields activation of adaptive immunity in patients with GBM via a T1IFN-based trajectory and identified a gene panel signature of TTFields effects on T cell activation and clonal expansion. Collectively, these studies defined a therapeutic strategy using TTFields as cancer immunotherapy in GBM and potentially other solid tumors.
Collapse
Affiliation(s)
- Dongjiang Chen
- Division of Neuro-Oncology and Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery and
| | - Son B. Le
- Division of Neuro-Oncology and Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery and
| | - Tarun E. Hutchinson
- Division of Neuro-Oncology and Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery and
| | - Anda-Alexandra Calinescu
- Division of Neuro-Oncology and Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery and
| | - Mathew Sebastian
- Medical Scientist Training Program, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Dan Jin
- Division of Neuro-Oncology and Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery and
| | - Tianyi Liu
- Division of Neuro-Oncology and Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery and
| | - Ashley Ghiaseddin
- Division of Neuro-Oncology and Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery and
| | - Maryam Rahman
- Division of Neuro-Oncology and Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery and
| | - David D. Tran
- Division of Neuro-Oncology and Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery and
| |
Collapse
|
42
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
43
|
Purow B. Delivering Glioblastoma a Kick-DGKα Inhibition as a Promising Therapeutic Strategy for GBM. Cancers (Basel) 2022; 14:cancers14051269. [PMID: 35267577 PMCID: PMC8909282 DOI: 10.3390/cancers14051269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022] Open
Abstract
Diacylglycerol kinase α (DGKα) inhibition may be particularly relevant for the treatment of glioblastoma (GBM), a relatively common brain malignancy incurable with current therapies. Prior reports have shown that DGKα inhibition has multiple direct activities against GBM cells, including suppressing the oncogenic pathways mTOR and HIF-1α. It also inhibits pathways associated with the normally treatment-resistant mesenchymal phenotype, yielding preferential activity against mesenchymal GBM; this suggests possible utility in combining DGKα inhibition with radiation and other therapies for which the mesenchymal phenotype promotes resistance. The potential for DGKα inhibition to block or reverse T cell anergy also suggests the potential of DGKα inhibition to boost immunotherapy against GBM, which is generally considered an immunologically "cold" tumor. A recent report indicates that DGKα deficiency increases responsiveness of macrophages, indicating that DGKα inhibition could also have the potential to boost macrophage and microglia activity against GBM-which could be a particularly promising approach given the heavy infiltration of these cells in GBM. DGKα inhibition may therefore offer a promising multi-pronged attack on GBM, with multiple direct anti-GBM activities and also the ability to boost both adaptive and innate immune responses against GBM. However, both the direct and indirect benefits of DGKα inhibition for GBM will likely require combinations with other therapies to achieve meaningful efficacy. Furthermore, GBM offers other challenges for the application of DGKα inhibitors, including decreased accessibility from the blood-brain barrier (BBB). The ideal DGKα inhibitor for GBM will combine potency, specificity, and BBB penetrability. No existing inhibitor is known to meet all these criteria, but the strong potential of DGKα inhibition against this lethal brain cancer should help drive development and testing of agents to bring this promising strategy to the clinic for patients with GBM.
Collapse
Affiliation(s)
- Benjamin Purow
- Neurology Department, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
44
|
Xu D, Zhou J, Mei H, Li H, Sun W, Xu H. Impediment of Cerebrospinal Fluid Drainage Through Glymphatic System in Glioma. Front Oncol 2022; 11:790821. [PMID: 35083148 PMCID: PMC8784869 DOI: 10.3389/fonc.2021.790821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) plays an important role in maintaining tissue homeostasis in the central nervous system. In 2012, the new CSF outflow pathway, “the glymphatic system,” was discovered. The glymphatic system mediates CSF and interstitial fluid exchange through the perivascular pathway, which eliminates harmful solutes in the brain parenchyma. In recent studies, the importance of the glymphatic system has been demonstrated in healthy and neurodegenerative disease brains. However, there is limited research on the function of the CSF in brain tumors. Intracranial hypertension caused by glioma can affect CSF drainage, which impacts the delivery of chemotherapy drugs via intrathecal injection. This study focused on changes in the glymphatic system and the role of aquaporin 4 (AQP4) in glymphatic transport in glioma. Methods In glioma-bearing rats, the effect of tracer infusion on the intracranial pressure (ICP) was evaluated using an ICP microsensor. In vivo magnetic resonance imaging and ex vivo bright field were used to monitor CSF tracer distribution after cisterna magna injection. AQP4 expression was quantitatively detected, and AQP4 in the astrocytes around the vessels was observed using immunofluorescence. Results The ICP of the tumor group was higher than that of the control group and the infusion rate of 2 µl/min did not affect ICP. In vivo and ex vivo imaging showed that the circulation of CSF tracers was significantly impaired in the tumor. High-power confocal microscopy revealed that, in the tumor, the surrounding of AQP4 by Evans Blue was decreased. In both tumor and contralateral areas, data indicated that the number of cluster designation 34 (CD34+) alpha-smooth muscle actin (α-SMA−) veins were more than that of CD34+α-SMA+ arteries. Moreover, in the tumor area, AQP4 in the astrocytes around the vessels was decreased. Conclusions These findings indicate that the para-arterial influx of subarachnoid CSF is limited in glioma, especially in those with reduced levels of the fundamental protein AQP4. Our results provide evidence toward a potential new treatment method for glioma in the future.
Collapse
Affiliation(s)
- Dan Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jie Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Decker Y, Krämer J, Xin L, Müller A, Scheller A, Fassbender K, Proulx ST. Magnetic resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice. JCI Insight 2021; 7:150881. [PMID: 34905509 PMCID: PMC8855808 DOI: 10.1172/jci.insight.150881] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The anatomical routes for the clearance of cerebrospinal fluid (CSF) remain incompletely understood. However, recent evidence has given strong support for routes leading to lymphatic vessels. A current debate centers upon the routes through which CSF can access lymphatics, with evidence emerging for either direct routes to meningeal lymphatics or along cranial nerves to reach lymphatics outside the skull. Here, a method was established to infuse contrast agent into the ventricles using indwelling cannulae during imaging of mice at 2 and 12 months of age by magnetic resonance imaging. As expected, a significant decline in overall CSF turnover was found with aging. Quantifications demonstrated that the bulk of the contrast agent flowed from the ventricles to the subarachnoid space in the basal cisterns. Comparatively little contrast agent signal was found at the dorsal aspect of the skull. The imaging dynamics from the two cohorts revealed that the contrast agent cleared from the cranium through the cribriform plate to the nasopharyngeal lymphatics. On decalcified sections, we confirmed that fluorescentlylabeled ovalbumin drains through the cribriform plate and can be found within lymphatics surrounding the nasopharynx. In conclusion, routes leading to nasopharyngeal lymphatics appear to be a major efflux pathway for cranial CSF.
Collapse
Affiliation(s)
- Yann Decker
- Department of Neurology, Saarland University, Homburg, Germany
| | - Jonas Krämer
- Department of Neurology, Saarland University, Homburg, Germany
| | - Li Xin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University, Homburg, Germany
| | - Anja Scheller
- Department of Physiology, Saarland University, Homburg, Germany
| | | | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Toh CH, Siow TY, Castillo M. Peritumoral Brain Edema in Metastases May Be Related to Glymphatic Dysfunction. Front Oncol 2021; 11:725354. [PMID: 34722268 PMCID: PMC8548359 DOI: 10.3389/fonc.2021.725354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Objectives The proliferation of microvessels with increased permeability is thought to be the cause of peritumoral brain edema (PTBE) in metastases. The contribution of the glymphatic system to the formation of PTBE in brain metastases remains unexplored. We aimed to investigate if the PTBE volume of brain metastases is related to glymphatic dysfunction. Materials and Methods A total of 56 patients with brain metastases who had preoperative dynamic susceptibility contrast-enhanced perfusion-weighted imaging for calculation of tumor cerebral blood volume (CBV) and diffusion tensor imaging for calculations of tumor apparent diffusion coefficient (ADC), tumor fractional anisotropy (FA), and analysis along perivascular space (ALPS) index were analyzed. The volumes of PTBE, whole tumor, enhancing tumor, and necrotic and hemorrhagic portions were manually measured. Additional information collected for each patient included age, sex, primary cancer, metastasis location and number, and the presence of concurrent infratentorial tumors. Linear regression analyses were performed to identify factors associated with PTBE volume. Results Among 56 patients, 45 had solitary metastasis, 24 had right cerebral metastasis, 21 had left cerebral metastasis, 11 had bilateral cerebral metastases, and 11 had concurrent infratentorial metastases. On univariable linear regression analysis, PTBE volume correlated with whole tumor volume (β = -0.348, P = 0.009), hemorrhagic portion volume (β = -0.327, P = 0.014), tumor ADC (β = 0.530, P <.001), and ALPS index (β = -0.750, P <.001). The associations of PTBE volume with age, sex, tumor location, number of tumors, concurrent infratentorial tumor, enhancing tumor volume, necrotic portion volume, tumor FA, and tumor CBV were not significant. On multivariable linear regression analysis, tumor ADC (β = 0.303; P = 0.004) and ALPS index (β = -0.624; P < 0.001) were the two independent factors associated with PTBE volume. Conclusion Metastases with higher tumor ADC and lower ALPS index were associated with larger peritumoral brain edema volumes. The higher tumor ADC may be related to increased periarterial water influx into the tumor interstitium, while the lower ALPS index may indicate insufficient fluid clearance. The changes in both tumor ADC and ALPS index may imply glymphatic dysfunction, which is, at least, partially responsible for peritumoral brain edema formation.
Collapse
Affiliation(s)
- Cheng Hong Toh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan.,Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Tiing Yee Siow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan
| | - Mauricio Castillo
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
47
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
48
|
Toh CH, Siow TY. Factors Associated With Dysfunction of Glymphatic System in Patients With Glioma. Front Oncol 2021; 11:744318. [PMID: 34631582 PMCID: PMC8496738 DOI: 10.3389/fonc.2021.744318] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 02/04/2023] Open
Abstract
Objectives Rodent experiments have provided some insights into the changes of glymphatic function associated with glioma growth. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method offers an opportunity for the noninvasive investigation of the glymphatic system in patients with glioma. We aimed to investigate the factors associated with glymphatic function changes in patients with glioma. Materials and Methods A total of 201 glioma patients (mean age = 47.4 years, 116 men; 86 grade II, 52 grade III, and 63 grade IV) who had preoperative diffusion tensor imaging for calculation of the ALPS index were retrospectively included. Information collected from each patient included sex, age, tumor grade, isocitrate dehydrogenase 1 (IDH1) mutation status, peritumoral brain edema volume, tumor volume, and ALPS index. Group differences in the ALPS index according to sex, tumor grade, and IDH1 mutation status were assessed using analysis of covariance with age adjustment. Linear regression analyses were performed to identify the factors associated with the ALPS index. Results Group comparisons revealed that the ALPS index of grade II/III gliomas was significantly higher than that of grade IV gliomas (p < 0.001). The ALPS index of IDH1 mutant gliomas was significantly higher than that of IDH1 wild-type gliomas (p < 0.001). On multivariable linear regression analysis, IDH1 mutation (β = 0.308, p < 0.001) and peritumoral brain edema volume (β = −0.353, p < 0.001) were the two independent factors associated with the ALPS index. Conclusion IDH1 wild-type gliomas and gliomas with larger peritumoral brain edema volumes were associated with a lower ALPS index, which may reflect impaired glymphatic function.
Collapse
Affiliation(s)
- Cheng Hong Toh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan.,Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Tiing Yee Siow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan
| |
Collapse
|
49
|
Current concepts on communication between the central nervous system and peripheral immunity via lymphatics: what roles do lymphatics play in brain and spinal cord disease pathogenesis? Biol Futur 2021; 72:45-60. [PMID: 34554497 DOI: 10.1007/s42977-021-00066-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) lacks conventional lymphatics within the CNS parenchyma, yet still maintains fluid homeostasis and immunosurveillance. How the CNS communicates with systemic immunity has thus been a topic of interest for scientists in the past century, which has led to several theories of CNS drainage routes. In addition to perineural routes, rediscoveries of lymphatics surrounding the CNS in the meninges revealed an extensive network of lymphatics, which we now know play a significant role in fluid homeostasis and immunosurveillance. These meningeal lymphatic networks exist along the superior sagittal sinus and transverse sinus dorsal to the brain, near the cribriform plate below the olfactory bulbs, at the base of the brain, and surrounding the spinal cord. Inhibition of one or all of these lymphatic networks can reduce CNS autoimmunity in a mouse model of multiple sclerosis (MS), while augmenting these lymphatic networks can improve immunosurveillance, immunotherapy, and clearance in glioblastoma, Alzheimer's disease, traumatic brain injury, and cerebrovascular injury. In this review, we will provide historical context of how CNS drainage contributes to immune surveillance, how more recently published studies fit meningeal lymphatics into the context of CNS homeostasis and neuroinflammation, identify the complex dualities of lymphatic function during neuroinflammation and how therapeutics targeting lymphatic function may be more complicated than currently appreciated, and conclude by identifying some unresolved questions and controversies that may guide future research.
Collapse
|
50
|
Choi J, Pant A, Medikonda R, Kim YH, Routkevitch D, Saleh L, Tong L, Chan HY, Nedrow J, Jackson C, Jackson C, Lim M. Sustained localized delivery of immunotherapy to lymph nodes reverses immunosuppression and increases long-term survival in murine glioblastoma. Oncoimmunology 2021; 10:1940673. [PMID: 34290904 PMCID: PMC8274437 DOI: 10.1080/2162402x.2021.1940673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction Despite the advent of immunotherapy as a promising therapeutic, glioblastoma (GBM) remains resistant to using checkpoint blockade due to its highly immunosuppressive tumor milieu. Moreover, current anti-PD-1 treatment requires multiple infusions with adverse systemic effects. Therefore, we used a PCL:PEG:PCL polymer gel loaded with anti-PD-1 and implanted at the site of lymph nodes in an attempt to maximize targeting of inactivated T cells as well as mitigate unnecessary systemic exposure. Methods Mice orthotopically implanted with GL261 glioma cells were injected with hydrogels loaded with anti-PD-1 in one of the following locations: cervical lymph nodes, inguinal lymph nodes, and the tumor site. Mice treated systemically with anti-PD-1 were used as comparative controls. Kaplan-Meier curves were generated for all arms, with ex vivo flow cytometric staining for L/D, CD45, CD3, CD4, CD8, TNF-α and IFN-y and co-culture ELISpots were done for immune cell activation assays. Results Mice implanted with PCL:PEG:PCL hydrogels carrying anti-PD-1 at the site of their lymph nodes showed significantly improved survival outcomes compared to mice systemically treated with anti-PD-1 (P = .0185). Flow cytometric analysis of brain tissue and co-culture of lymph node T cells from mice implanted with gels demonstrated increased levels of IFN-y and TNF-α compared to mice treated with systemic anti-PD-1, indicating greater reversal of immunosuppression compared to systemic treatment. Conclusions Our data demonstrate proof of principle for using localized therapy that targets lymph nodes for GBM. We propose an alternative treatment paradigm for developing new sustained local treatments with immunotherapy that are able to eliminate the need for multiple systemic infusions and their off-target effects.
Collapse
Affiliation(s)
- John Choi
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Ayush Pant
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Ravi Medikonda
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Young-Hoon Kim
- Department of Neurosurgery, College of Medicine, Asan Medical Center, University of Ulsan, Songpa-gu, Seoul, Republic of Korea
| | - Denis Routkevitch
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Laura Saleh
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Luqing Tong
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Hok Yee Chan
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Jessie Nedrow
- Department of Radiology, Radiological Physics Division, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Christopher Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Christina Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|