1
|
Preeclampsia, Natural History, Genes, and miRNAs Associated with the Syndrome. J Pregnancy 2022; 2022:3851225. [PMID: 35198246 PMCID: PMC8860533 DOI: 10.1155/2022/3851225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia (PE) is a hypertensive disease that affects pregnant women after 20 weeks of gestation. This disease is associated with an important risk of maternal and fetal mortality. PE is described as a placental pathology because, after delivery, most women recover normal arterial pressure. Poor invasion of the spiral arteries is a phenomenon well described in PE; this leads to a hypoxic uterine bed and imbalance of antiangiogenic and proangiogenic factors in the uteroplacental region, which in turn triggers the disease phenotype. The causes of the pathology are unclear; nevertheless, numerous approaches, including next-generation sequencing, association, and case control and miRNA studies, have shed light on the genetic/molecular basis of PE. These studies help us better understand the disease to advance new treatment strategies.
Collapse
|
2
|
Essential Role of the 14q32 Encoded miRNAs in Endocrine Tumors. Genes (Basel) 2021; 12:genes12050698. [PMID: 34066712 PMCID: PMC8151414 DOI: 10.3390/genes12050698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The 14q32 cluster is among the largest polycistronic miRNA clusters. miRNAs encoded here have been implicated in tumorigenesis of multiple organs including endocrine glands. METHODS Critical review of miRNA studies performed in endocrine tumors have been performed. The potential relevance of 14q32 miRNAs through investigating their targets, and integrating the knowledge provided by literature data and bioinformatics predictions have been indicated. RESULTS Pituitary adenoma, papillary thyroid cancer and a particular subset of pheochromocytoma and adrenocortical cancer are characterized by the downregulation of miRNAs encoded by the 14q32 cluster. Pancreas neuroendocrine tumors, most of the adrenocortical cancer and medullary thyroid cancer are particularly distinct, as 14q32 miRNAs were overexpressed. In pheochromocytoma and growth-hormone producing pituitary adenoma, however, both increased and decreased expression of 14q32 miRNAs cluster members were observed. In the background of this phenomenon methodological, technical and biological factors are hypothesized and discussed. The functions of 14q32 miRNAs were also revealed by bioinformatics and literature data mining. CONCLUSIONS 14q32 miRNAs have a significant role in the tumorigenesis of endocrine organs. Regarding their stable expression in the circulation of healthy individuals, further investigation of 14q32 miRNAs could provide a potential for use as biomarkers (diagnostic or prognostic) in endocrine neoplasms.
Collapse
|
3
|
The Physiological MicroRNA Landscape in Nipple Aspirate Fluid: Differences and Similarities with Breast Tissue, Breast Milk, Plasma and Serum. Int J Mol Sci 2020; 21:ijms21228466. [PMID: 33187146 PMCID: PMC7696615 DOI: 10.3390/ijms21228466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs) target 60% of human messenger RNAs and can be detected in tissues and biofluids without loss of stability during sample processing, making them highly appraised upcoming biomarkers for evaluation of disease. However, reporting of the abundantly expressed miRNAs in healthy samples is often surpassed. Here, we characterized for the first time the physiological miRNA landscape in a biofluid of the healthy breast: nipple aspirate fluid (NAF), and compared NAF miRNA expression patterns with publically available miRNA expression profiles of healthy breast tissue, breast milk, plasma and serum. Methods: MiRNA RT-qPCR profiling of NAF (n = 41) and serum (n = 23) samples from two healthy female cohorts was performed using the TaqMan OpenArray Human Advanced MicroRNA 754-Panel. MiRNA quantification data based on non-targeted or multi-targeted profiling techniques for breast tissue, breast milk, plasma and serum were retrieved from the literature by means of a systematic search. MiRNAs from each individual study were orderly ranked between 1 and 50, combined into an overall ranking per sample type and compared. Results: NAF expressed 11 unique miRNAs and shared 21/50 miRNAs with breast tissue. Seven miRNAs were shared between the five sample types. Overlap between sample types varied between 42% and 62%. Highly ranked NAF miRNAs have established roles in breast carcinogenesis. Conclusion: This is the first study to characterize and compare the unique physiological NAF-derived miRNA landscape with the physiological expression pattern in breast tissue, breast milk, plasma and serum. Breast-specific sources did not mutually overlap more than with systemic sources. Given their established role in carcinogenesis, NAF miRNA assessment could be a valuable tool in breast tumor diagnostics.
Collapse
|
4
|
Ravanidis S, Bougea A, Papagiannakis N, Koros C, Simitsi AM, Pachi I, Breza M, Stefanis L, Doxakis E. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann Clin Transl Neurol 2020; 7:1594-1607. [PMID: 32860338 PMCID: PMC7480914 DOI: 10.1002/acn3.51146] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Objective There is a pressing need to identify and validate, minimally invasive, molecular biomarkers that will complement current practices and increase the diagnostic accuracy in Parkinson’s disease (PD). Brain‐enriched miRNAs regulate all aspects of neuron development and function; importantly, they are secreted by neurons in amounts that can be readily detected in the plasma. Τhe aim of the present study was to validate a set of previously identified brain‐enriched miRNAs with diagnostic potential for idiopathic PD and recognize the molecular pathways affected by these deregulated miRNAs. Methods RT‐qPCR was performed in the plasma of 92 healthy controls and 108 idiopathic PD subjects. Statistical and in silico analyses were used to validate deregulated miRNAs and pathways in PD, respectively. Results miR‐22‐3p, miR‐124‐3p, miR‐136‐3p, miR‐154‐5p, and miR‐323a‐3p levels were found to be differentially expressed between healthy controls and PD patients. miR‐330‐5p, miR‐433‐3p, and miR‐495‐3p levels were overall higher in male subjects. Most of these miRNAs are clustered at Chr14q32 displaying CREB1, CEBPB, and MAZ transcription factor binding sites. Gene Ontology annotation analysis of deregulated miRNA targets revealed that “Protein modification,” “Transcription factor activity,” and “Cell death” terms were over‐represented. Kyoto Encyclopedia of Genes and Genome analysis revealed that “Long‐term depression,” “TGF‐beta signaling,” and “FoxO signaling” pathways were significantly affected. Interpretation We validated a panel of brain‐enriched miRNAs that can be used along with other measures for the detection of PD, revealed molecular pathways targeted by these deregulated miRNAs, and identified upstream transcription factors that may be directly implicated in PD pathogenesis.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Anastasia Bougea
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Nikolaos Papagiannakis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Christos Koros
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Athina Maria Simitsi
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Ioanna Pachi
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Marianthi Breza
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| |
Collapse
|
5
|
Doxakis E. Cell-free microRNAs in Parkinson's disease: potential biomarkers that provide new insights into disease pathogenesis. Ageing Res Rev 2020; 58:101023. [PMID: 32001380 DOI: 10.1016/j.arr.2020.101023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are master post-transcriptional regulators of gene expression and their specific footprints reflect disease conditions. Over the last few years, several primary reports have described the deregulation of cell-free miRNAs in Parkinson's disease (PD), however, results have been rather inconsistent due to preanalytical and analytical challenges. This study integrated the data across twenty-four reports to identify steadily deregulated miRNAs that may assist in the path towards biomarker development and molecular characterization of the underlying pathology. Stringent KEGG pathway analysis of the miRNA targets revealed FoxO, Prolactin, TNF, and ErbB signaling pathways as the most significantly enriched categories while Gene Ontology analysis revealed that the protein targets are mostly associated with transcription. Chromosomal location of the consistently deregulated miRNAs revealed that over a third of them were clustered at the same location at Chr14q32 suggesting that they are co-regulated by specific transcription factors. This genomic region is inherently unstable due to expanded TGG repeats and responsible for human abnormalities. Stringent analysis of transcription factor sites surrounding the deregulated miRNAs revealed that CREB1, CEBPB and MAZ sites existed in approximately half of the miRNAs, including all of the miRNAs located at Chr14q32. Additional studies are now needed to determine the biomarker potential of the consistently deregulated miRNAs in PD and the therapeutic implications of these bioinformatics insights.
Collapse
|