1
|
Carpenter AD, Empfield KM, Petrus SA, Fatanmi OO, Wise SY, Tyburski JB, Cheema AK, Singh VK. Metabolomic changes in preterminal serum samples of rhesus macaques exposed to two different lethal doses of total-body gamma-radiation. Sci Rep 2024; 14:23930. [PMID: 39397118 PMCID: PMC11471850 DOI: 10.1038/s41598-024-75225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
Exposure to ionizing radiation induces cellular and molecular damage leading to a cascade of events resulting in tissue and organ injury. Our study strives to characterize and validate metabolomic changes in preterminal stage (immediately prior to death) samples collected from rhesus macaques lethally irradiated with one of two different doses of radiation. Peripheral blood samples were collected pre-exposure, post-exposure, and at the preterminal stage of nonhuman primates (NHPs that did not survive exposure with 7.2 Gy or 7.6 Gy total-body radiation (LD60-80/60)). We analyzed global metabolomic alterations using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in serum samples collected at various timepoints in relation to radiation exposure. The goal of this study was to validate the metabolic shifts present in samples collected just prior to death, which were reported earlier in a preliminary study with a limited number of samples and a single dose of radiation. Here, we demonstrate that radiation exposure induced significant time-dependent metabolic alterations compared with pre-exposure samples. We observed significant metabolite dysregulation in animals exposed to 7.6 Gy compared to 7.2 Gy. Greater metabolic disruption was observed in the preterminal groups than all of the other post-irradiation timepoints in both cohorts. Metabolomic shifts in these preterminal groups also revealed consistent disturbances in sphingolipid metabolism, steroid hormone biosynthesis, and glycerophospholipid metabolism pathways. Overall, the sphingolipid metabolism pathway appears to be representative of the preterminal phenotype, confirming the results of our preliminary study. These results offer important and novel insights for identification and validation of biomarkers for lethality, and such observations would be valuable for triage during a radiological/nuclear mass casualty scenario.
Collapse
Affiliation(s)
- Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Keirstyn M Empfield
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Sarah A Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301, Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Tichy A, Carpenter AD, Li Y, Rydlova G, Rehulka P, Markova M, Milanova M, Chmil V, Cheema AK, Singh VK. Radiation Signature in Plasma Metabolome of Total-Body Irradiated Nonhuman Primates and Clinical Patients. Int J Mol Sci 2024; 25:9208. [PMID: 39273157 PMCID: PMC11395250 DOI: 10.3390/ijms25179208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.
Collapse
Affiliation(s)
- Ales Tichy
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gabriela Rydlova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Biology and Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Marketa Markova
- Department of Haematology and Blood Transfusion, University Hospital Na Bulovce, 128 00 Prague, Czech Republic
| | - Marcela Milanova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Vojtech Chmil
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 2057, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Carpenter AD, Li Y, Wise SY, Fatanmi OO, Petrus SA, Fam CM, Carlson SJ, Cox GN, Cheema AK, Singh VK. Pharmacokinetic and Metabolomic Studies with a Promising Radiation Countermeasure, BBT-059 (PEGylated interleukin-11), in Rhesus Nonhuman Primates. Radiat Res 2024; 202:26-37. [PMID: 38714310 PMCID: PMC11295257 DOI: 10.1667/rade-23-00194.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
BBT-059, a long-acting PEGylated interleukin-11 (IL-11) analog that is believed to have hematopoietic promoting and anti-apoptotic properties, is being developed as a potential radiation medical countermeasure (MCM) for hematopoietic acute radiation syndrome (H-ARS). This agent has been shown to improve survival in lethally irradiated mice. To further evaluate the drug's toxicity and safety profile, 12 naïve nonhuman primates (NHPs, rhesus macaques) were administered one of three doses of BBT-059 subcutaneously and were monitored for the next 21 days. Blood samples were collected throughout the study to assess the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug as well as its effects on complete blood counts, cytokines, vital signs, and to conduct metabolomic studies. No adverse effects were detected in any treatment group during the study. Short-term changes in metabolomic profiles were present in all groups treated with BBT-059 beginning immediately after drug administration and reverting to near normal levels by the end of the study period. Several pathways and metabolites, particularly those related to inflammation and steroid hormone biosynthesis, were activated by BBT-059 administration. Taken together, these observations suggest that BBT-059 has a good safety profile for further development as a radiation MCM for regulatory approval for human use.
Collapse
Affiliation(s)
- Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sarah A. Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | | | | | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
4
|
Ghali ENHK, Sandopu SK, Maurya DK, Meriga B. Insights into the radioprotective efficacy of Pterocarpus santalinus L. aqueous extract. Fitoterapia 2024; 176:105986. [PMID: 38703914 DOI: 10.1016/j.fitote.2024.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In the present study, we have attempted a comprehensive assessment of the possible radioprotective efficacy of Pterocarpus santalinus aqueous extract (PSAE). All the studied models were gamma-irradiated with prior treatment with PSAE. First, the content of total phenols (4.061 μg/mg gallic acid equivalents), flavonoids (6.616 μg/mg quercetin equivalents), and tannins (0.008 mg/L of PSAE) were determined spectrophotometrically. Second, UHPLC-HRMS analysis was performed to identify the possible radioprotectors. Of those, santalins A & B are known for their usage as natural color in foods and alcoholic beverages identified in PSAE. Treatment was well tolerated with no side effects from PSAE. Later, it was shown that radiation-induced lethality significantly amended in PSAE-treated spleen lymphocytes as evidenced by reduced elevated levels of ROS and lipid peroxidation, restored total thiols and GSH: GSSG, inhibited DNA DSBs and cell death. Furthermore, an immunomodulation study was carried out because radiation exposure induces an inflammatory response. Our study shows that PSAE suppressed concanavalin A-induced T-cell proliferation as evidenced by CFSE dye dilution and CD69 antibody staining methods. Taken together, the current study explored the protective efficacy of PSAE from gamma radiation-inflicted injuries and hence we recommend PSAE as a potent radioprotective formulation.
Collapse
Affiliation(s)
- E N Hanuma Kumar Ghali
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, India; Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Medicine and Oncology ISU, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen 78504, TX, USA
| | | | - Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, India.
| |
Collapse
|
5
|
Carpenter AD, Li Y, Fatanmi OO, Wise SY, Petrus SA, Janocha BL, Cheema AK, Singh VK. Metabolomic Profiles in Tissues of Nonhuman Primates Exposed to Either Total- or Partial-Body Radiation. Radiat Res 2024; 201:371-383. [PMID: 38253059 DOI: 10.1667/rade-23-00091.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 01/24/2024]
Abstract
A complex cascade of systemic and tissue-specific responses induced by exposure to ionizing radiation can lead to functional impairment over time in the surviving population. Current methods for management of survivors of unintentional radiation exposure episodes rely on monitoring individuals over time for the development of adverse clinical symptoms due to the lack of predictive biomarkers for tissue injury. In this study, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that received either 4.0 Gy or 5.8 Gy total-body irradiation (TBI) of 60Co gamma rays, and 4.0 or 5.8 Gy partial-body irradiation (PBI) from LINAC-derived photons and were treated with a promising radiation countermeasure, gamma-tocotrienol (GT3). These include small molecule alterations that correlate with radiation effects in the jejunum, lung, kidney, and spleen of animals that either survived or succumbed to radiation toxicities over a 30-day period. Radiation-induced metabolic changes in tissues were observed in animals exposed to both doses and types of radiation, but were partially alleviated in GT3-treated and irradiated animals, with lung and spleen being most responsive. The majority of the pathways protected by GT3 treatment in these tissues were related to glucose metabolism, inflammation, and aldarate metabolism, suggesting GT3 may exert radioprotective effects in part by sparing these pathways from radiation-induced dysregulation. Taken together, the results of our study demonstrate that the prophylactic administration of GT3 results in metabolic and lipidomic shifts that likely provide an overall advantage against radiation injury. This investigation is among the first to highlight the use of a molecular phenotyping approach in a highly translatable NHP model of partial- and total-body irradiation to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.
Collapse
Affiliation(s)
- Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sarah A Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Brianna L Janocha
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
6
|
Carpenter AD, Fatanmi OO, Wise SY, Petrus SA, Tyburski JB, Cheema AK, Singh VK. Metabolomic Changes in Plasma of Preterminal Stage of Rhesus Nonhuman Primates Exposed to Lethal Dose of Radiation. Metabolites 2023; 14:18. [PMID: 38248821 PMCID: PMC10819041 DOI: 10.3390/metabo14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Ionizing radiation exposure is known to induce molecular and cellular injury, inflicting a cascade of potentially catastrophic events leading to tissue and organ damage. Metabolomic analysis allows for the identification and quantification of small molecules downstream of genomic changes induced by radiation exposure. We aimed to characterize metabolomic changes that underscore the prefinal stage of lethally irradiated rhesus nonhuman primates (NHPs). Peripheral blood was drawn at baseline, post-exposure, as well as at the preterminal stage in NHPs (immediately prior to death in moribund NHPs) that did not survive exposure with 7.2 Gy total-body radiation (LD70/60). Herein, we analyzed global metabolomic changes using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in plasma samples of NHPs collected at various timepoints in relation to irradiation. The overall goal was to identify metabolic shifts present immediately prior to death. Our findings showed radiation induced significant time-dependent metabolic perturbations when compared to pre-irradiation profiles, particularly in glycerophospholipid metabolism and steroid hormone biosynthesis and metabolism pathways. These findings provide valuable insights for identifying biomarkers for lethality, which may be helpful for triage during a mass casualty scenario.
Collapse
Affiliation(s)
- Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sarah A. Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (A.D.C.)
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Ji L, Cui P, Zhou S, Qiu L, Huang H, Wang C, Wang J. Advances of Amifostine in Radiation Protection: Administration and Delivery. Mol Pharm 2023; 20:5383-5395. [PMID: 37747899 DOI: 10.1021/acs.molpharmaceut.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Amifostine (AMF, also known as WR-2721) is the only approved broad-spectrum small-molecule radiation protection agent that can combat hematopoietic damage caused by ionizing radiation and is used as an antitumor adjuvant and cell protector in cancer chemotherapy and radiotherapy. Amifostine is usually injected intravenously before chemotherapy or radiotherapy and has been used in the treatment of head and neck cancer. However, the inconvenient intravenous administration and its toxic side effects such as hypotension have severely limited its further application in clinic. In order to reduce the toxic and side effects, scientists are trying to develop a variety of drug administration methods and are devoted to developing a wide application of amifostine in radiation protection. This paper reviews the research progress of amifostine for radiation protection in recent years, discusses its mechanism of action, clinical application, and other aspects, with focus on summarizing the most widely studied amifostine injection administration and drug delivery systems, and explored the correlation between various administrations and drug efficacies.
Collapse
Affiliation(s)
- Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Hai Huang
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
8
|
Singh VK, Fatanmi OO, Wise SY, Carpenter AD, Janocha B, Seed TM. Novel biomarkers for acute radiation injury and countermeasures using large and small animal models and multi-omics approach. RADIATION PROTECTION DOSIMETRY 2023; 199:1526-1532. [PMID: 37721071 DOI: 10.1093/rpd/ncad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 09/19/2023]
Abstract
Threats of radiological or nuclear disasters are of serious concern and a top priority for government agencies involved in domestic security and public health preparedness. There is a need for sensitive bioassays for biodosimetric assessments of radiation exposures originating from unanticipated nuclear/radiological events. The Food and Drug Administration Animal Rule approval pathway requires an in-depth understanding of the mechanisms of radiation injury, drug efficacy and biomarkers for radiation medical countermeasure approval. Biomarkers can be helpful for extrapolating the efficacious countermeasure dose in animals to humans. We summarised here our studies to identify candidate biomarkers for the acute radiation injury using various omic platforms (metabolomics/lipidomics, proteomics, microbiome and transcriptomics/microRNA) using murine and non-human primate models conducted in our laboratory. Multi-omic platforms appear to be highly useful in assessing radiation exposure levels and for identifying biomarkers of radiation injury and countermeasure efficacy, which can expedite the regulatory approval of countermeasures.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Stephen Y Wise
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alana D Carpenter
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Brianna Janocha
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
9
|
Li Y, Bansal S, Sridharan V, Bansal S, Jayatilake MM, Fernández JA, Griffin JH, Boerma M, Cheema AK. Urinary Metabolomics for the Prediction of Radiation-Induced Cardiac Dysfunction. Metabolites 2023; 13:metabo13040525. [PMID: 37110184 PMCID: PMC10146652 DOI: 10.3390/metabo13040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Survivors of acute radiation exposures are likely to experience delayed effects that manifest as injury in late-responding organs such as the heart. Noninvasive indicators of radiation-induced cardiac dysfunction are important in the prediction and diagnosis of this disease. In this study, we aimed to identify urinary metabolites indicative of radiation-induced cardiac damage by analyzing previously collected urine samples from a published study. The samples were collected from male and female wild-type (C57BL/6N) and transgenic mice constitutively expressing Activated Protein C (APCHi), a circulating protein with potential cardiac protective properties, that were exposed to 9.5 Gy of γ-rays. We utilized LC-MS-based metabolomics and lipidomics for the analysis of urine samples collected at 24 h, 1 week, 1 month, 3 months, and 6 months post-irradiation. Radiation caused perturbations in the TCA cycle, glycosphingolipid metabolism, fatty acid oxidation, purine catabolism, and amino acid metabolites, which were more prominent in wild-type (WT) mice compared to APCHi mice, suggesting a differential response between the two genotypes. After combining genotypes and sexes, we identified a multi-analyte urinary panel at early post-irradiation time points that predicted heart dysfunction using a logistic regression model with a discovery validation study design. These studies demonstrate the utility of a molecular phenotyping approach to develop a urinary biomarker panel predictive of delayed effects of ionizing radiation. It is important to note that no live mice were used or assessed in this study; instead, we focused solely on analyzing previously collected urine samples.
Collapse
Affiliation(s)
- Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University Medical Center, Washington, DC 20057, USA
- Departments of Biochemistry, Molecular, and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, 4301 West Markham #522-10, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sunil Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Meth M. Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jose A. Fernández
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - John H. Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, 4301 West Markham #522-10, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University Medical Center, Washington, DC 20057, USA
- Departments of Biochemistry, Molecular, and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
10
|
Dhariwal S, Maan K, Baghel R, Sharma A, Malakar D, Rana P. Systematic untargeted UHPLC-Q-TOF-MS based lipidomics workflow for improved detection and annotation of lipid sub-classes in serum. Metabolomics 2023; 19:24. [PMID: 36971892 DOI: 10.1007/s11306-023-01983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/04/2023] [Indexed: 03/28/2023]
Abstract
INTRODUCTION AND OBJECTIVE Taking into consideration the challenges of lipid analytics, present study aims to design the best high-throughput workflow for detection and annotation of lipids. MATERIAL AND METHODS Serum lipid profiling was performed on CSH-C18 and EVO-C18 columns using UHPLC Q-TOF-MS and generated lipid features were annotated based on m/z and fragment ion using different software. RESULT AND DISCUSSION Better detection of features was observed in CSH-C18 than EVO-C18 with enhanced resolution except for Glycerolipids (triacylglycerols) and Sphingolipids (sphingomyelin). CONCLUSION The study revealed an optimized untargeted Lipidomics-workflow with comprehensive lipid profiling (CSH-C18 column) and confirmatory annotation (LipidBlast).
Collapse
Affiliation(s)
- Seema Dhariwal
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Ruchi Baghel
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Apoorva Sharma
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | | | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
11
|
Shakyawar SK, Mishra NK, Vellichirammal NN, Cary L, Helikar T, Powers R, Oberley-Deegan RE, Berkowitz DB, Bayles KW, Singh VK, Guda C. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat Res 2023; 199:89-111. [PMID: 36368026 PMCID: PMC10279411 DOI: 10.1667/rade-21-00187.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.
Collapse
Affiliation(s)
- Sushil K Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetha N Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynnette Cary
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Singh VK, Seed TM. Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences perspective on space radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:20-29. [PMID: 36336365 DOI: 10.1016/j.lssr.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
There is a need to develop and deploy medical countermeasures (MCMs) in order to support astronauts during space missions against excessive exposures to ionizing radiation exposure. The radiation environment of extraterrestrial space is complex and is characterized by nearly constant fluences of elemental atomic particles (protons being a dominant particle type) with widely different energies and ionization potentials. Chronic exposure to such ionizing radiation carries both near- and long-term health risks, which are generally related to the relative intensity and duration of exposure. These radiation-associated health risks can be managed only to a limited extent by physical means, but perhaps they might be more effectively managed biomedically. The Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences has a long history of researching and developing MCMs specifically designed to support terrestrial-based military missions involving a radiation-threat component. The development of MCMs for both low and high doses of radiation are major aims of current research, and as such can provide lessons learned for the development of countermeasures applicable to future space missions and its extraterrestrial radiation environment.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA
| |
Collapse
|
13
|
Hinzman CP, Jayatilake M, Bansal S, Fish BL, Li Y, Zhang Y, Bansal S, Girgis M, Iliuk A, Xu X, Fernandez JA, Griffin JH, Ballew EA, Unger K, Boerma M, Medhora M, Cheema AK. An optimized method for the isolation of urinary extracellular vesicles for molecular phenotyping: detection of biomarkers for radiation exposure. J Transl Med 2022; 20:199. [PMID: 35538547 PMCID: PMC9092707 DOI: 10.1186/s12967-022-03414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications across clinical research, including monitoring radiation exposure. A key limitation to their implementation is minimal standardization in EV isolation and analytical methods. Further, most urinary EV isolation protocols necessitate large volumes of sample. This study aimed to compare and optimize isolation and analytical methods for EVs from small volumes of urine. Methods 3 EV isolation methods were compared: ultracentrifugation, magnetic bead-based, and size-exclusion chromatography from 0.5 mL or 1 mL of rat and human urine. EV yield and mass spectrometry signals (Q-ToF and Triple Quad) were evaluated from each method. Metabolomic profiling was performed on EVs isolated from the urine of rats exposed to ionizing radiation 1-, 14-, 30- or 90-days post-exposure, and human urine from patients receiving thoracic radiotherapy for the treatment of lung cancer pre- and post-treatment. Results Size-exclusion chromatography is the preferred method for EV isolation from 0.5 mL of urine. Mass spectrometry-based metabolomic analyses of EV cargo identified biochemical changes induced by radiation, including altered nucleotide, folate, and lipid metabolism. We have provided standard operating procedures for implementation of these methods in other laboratories. Conclusions We demonstrate that EVs can be isolated from small volumes of urine and analytically investigated for their biochemical contents to detect radiation induced metabolomic changes. These findings lay a groundwork for future development of methods to monitor response to radiotherapy and can be extended to an array of molecular phenotyping studies aimed at characterizing EV cargo. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03414-7.
Collapse
Affiliation(s)
- Charles P Hinzman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Meth Jayatilake
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Sunil Bansal
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Yubo Zhang
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Shivani Bansal
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Michael Girgis
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN, 47906, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jose A Fernandez
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Elizabeth A Ballew
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC, 20007, USA
| | - Keith Unger
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC, 20007, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AK, 72205, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amrita K Cheema
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20007, USA. .,Department of Oncology, Georgetown University Medical Center, Washington, DC, 20007, USA.
| |
Collapse
|
14
|
Boutros SW, Krenik D, Holden S, Unni VK, Raber J. Common cancer treatments targeting DNA double strand breaks affect long-term memory and relate to immediate early gene expression in a sex-dependent manner. Oncotarget 2022; 13:198-213. [PMID: 35106123 PMCID: PMC8794536 DOI: 10.18632/oncotarget.28180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
DNA double strand breaks (DSBs) have been highly studied in the context of cancers, as DSBs can lead to apoptosis or tumorigenesis. Several pharmaceuticals are widely used to target DSBs during cancer therapy. Amifostine (WR-2721) and etoposide are two commonly used drugs: amifostine reduces DSBs, whereas etoposide increases DSBs. Recently, a novel role for DSBs in immediate early gene expression, learning, and memory has been suggested. Neither amifostine nor etoposide have been assessed for their effects on learning and memory without confounding factors. Moreover, sex-dependent effects of these drugs have not been reported. We administered amifostine or etoposide to 3-4-month-old male and female C57Bl/6J mice before or after training in fear conditioning and assessed learning, memory, and immediate early genes. We observed sex-dependent baseline and drug-induced differences, with females expressing higher cFos and FosB levels than males. These were affected by both amifostine and etoposide. Post-training injections of amifostine affected long-term contextual fear memory; etoposide affected contextual and cued fear memory. These data support the hypothesis that DSBs contribute to learning and memory, and that these could play a part in cognitive side effects during common treatment regimens. The sex-dependent effects also highlight an important factor when considering treatment plans.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Destine Krenik
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Vivek K. Unni
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
- OHSU Parkinson Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, The Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
15
|
Boutros SW, Zimmerman B, Nagy SC, Lee JS, Perez R, Raber J. Amifostine (WR-2721) Mitigates Cognitive Injury Induced by Heavy Ion Radiation in Male Mice and Alters Behavior and Brain Connectivity. Front Physiol 2021; 12:770502. [PMID: 34867479 PMCID: PMC8637850 DOI: 10.3389/fphys.2021.770502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
The deep space environment contains many risks to astronauts during space missions, such as galactic cosmic rays (GCRs) comprised of naturally occurring heavy ions. Heavy ion radiation is increasingly being used in cancer therapy, including novel regimens involving carbon therapy. Previous investigations involving simulated space radiation have indicated a host of detrimental cognitive and behavioral effects. Therefore, there is an increasing need to counteract these deleterious effects of heavy ion radiation. Here, we assessed the ability of amifostine to mitigate cognitive injury induced by simulated GCRs in C57Bl/6J male and female mice. Six-month-old mice received an intraperitoneal injection of saline, 107 mg/kg, or 214 mg/kg of amifostine 1 h prior to exposure to a simplified five-ion radiation (protons, 28Si, 4He, 16O, and 56Fe) at 500 mGy or sham radiation. Mice were behaviorally tested 2-3 months later. Male mice that received saline and radiation exposure failed to show novel object recognition, which was reversed by both doses of amifostine. Conversely, female mice that received saline and radiation exposure displayed intact object recognition, but those that received amifostine prior to radiation did not. Amifostine and radiation also had distinct effects on males and females in the open field, with amifostine affecting distance moved over time in both sexes, and radiation affecting time spent in the center in females only. Whole-brain analysis of cFos immunoreactivity in male mice indicated that amifostine and radiation altered regional connectivity in areas involved in novel object recognition. These data support that amifostine has potential as a countermeasure against cognitive injury following proton and heavy ion irradiation in males.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sydney C. Nagy
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Joanne S. Lee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, United States
| |
Collapse
|
16
|
Cheema AK, Li Y, Singh J, Johnson R, Girgis M, Wise SY, Fatanmi OO, Kaytor MD, Singh VK. Microbiome study in irradiated mice treated with BIO 300, a promising radiation countermeasure. Anim Microbiome 2021; 3:71. [PMID: 34627406 PMCID: PMC8501697 DOI: 10.1186/s42523-021-00132-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
Background The mammalian gut harbors very complex and diverse microbiota that play an important role in intestinal homeostasis and host health. Exposure to radiation results in dysbiosis of the gut microbiota leading to detrimental pathophysiological changes to the host. To alleviate the effects of irradiation, several candidate countermeasures are under investigation. BIO 300, containing synthetic genistein formulated as an amorphous solid dispersion or as an aqueous suspension of nanoparticles, is a promising candidate under advanced development. The aim of this study was to investigate the effects of BIO 300 on the gut microbiome and metabolome of mice exposed to 60Co gamma-radiation. The gut microbiota and metabolome of control and drug-treated mice exposed to radiation was characterized by bacterial 16S rRNA amplicon sequencing and untargeted metabolomics. Results We found that irradiation altered the Firmicutes/Bacteroidetes ratio and significantly decreased the relative abundance of Lactobacillus, both in BIO 300-treated and control mice; however, the ratio returned to near normal levels in BIO 300-treated mice by day 14 post-irradiation. Concomitantly, we also observed corrective shifts in metabolic pathways that were perturbed after irradiation. Conclusions Overall, the data presented show that radiation exposure led to a relative depletion of commensals like Lactobacillus leading to an inflammatory metabolic phenotype while the majority of the drug-treated mice showed alleviation of this condition primarily by restoration of normal gut microbiota. These results indicate that the radioprotective effects of BIO 300, at least in part, may involve correction of the host-microbiome metabolic axis. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00132-1.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jatinder Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ryan Johnson
- Department of Preventive Medicine and Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. .,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
17
|
Molecular and Biologic Targets for Radiation Fibrosis: Implications for Rehabilitation. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-021-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Crook A, De Lima Leite A, Payne T, Bhinderwala F, Woods J, Singh VK, Powers R. Radiation exposure induces cross-species temporal metabolic changes that are mitigated in mice by amifostine. Sci Rep 2021; 11:14004. [PMID: 34234212 PMCID: PMC8263605 DOI: 10.1038/s41598-021-93401-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Exposure to acute, damaging radiation may occur through a variety of events from cancer therapy and industrial accidents to terrorist attacks and military actions. Our understanding of how to protect individuals and mitigate the effects of radiation injury or Acute Radiation Syndrome (ARS) is still limited. There are only a few Food and Drug Administration-approved therapies for ARS; whereas, amifostine is limited to treating low dose (0.7-6 Gy) radiation poisoning arising from cancer radiotherapy. An early intervention is critical to treat ARS, which necessitates identifying diagnostic biomarkers to quickly characterize radiation exposure. Towards this end, a multiplatform metabolomics study was performed to comprehensively characterize the temporal changes in metabolite levels from mice and non-human primate serum samples following γ-irradiation. The metabolomic signature of amifostine was also evaluated in mice as a model for radioprotection. The NMR and mass spectrometry metabolomics analysis identified 23 dysregulated pathways resulting from the radiation exposure. These metabolomic alterations exhibited distinct trajectories within glucose metabolism, phospholipid biosynthesis, and nucleotide metabolism. A return to baseline levels with amifostine treatment occurred for these pathways within a week of radiation exposure. Together, our data suggests a unique physiological change that is independent of radiation dose or species. Furthermore, a metabolic signature of radioprotection was observed through the use of amifostine prophylaxis of ARS.
Collapse
Affiliation(s)
- Alexandra Crook
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Aline De Lima Leite
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Thomas Payne
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Jade Woods
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, USUHS, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD, 20814, USA.
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA.
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA.
| |
Collapse
|
19
|
Singh VK, Seed TM, Cheema AK. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: current status and future perspectives. Expert Rev Mol Diagn 2021; 21:641-654. [PMID: 34024238 DOI: 10.1080/14737159.2021.1933448] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION There is an urgent need for specific and sensitive bioassays to augment biodosimetric assessments of unwanted and excessive radiation exposures that originate from unexpected nuclear/radiological events, including nuclear accidents, acts of terrorism, or the use of a radiological dispersal device. If sufficiently intense, such ionizing radiation exposures are likely to impact normal metabolic processes within the cells and organs of the body, thus inducing multifaceted biological responses. AREAS COVERED This review covers the application of metabolomics, an emerging and promising technology based on quantitative and qualitative determinations of small molecules in biological samples for the rapid assessment of an individual's exposure to ionizing radiation. Recent advancements in the analytics of high-resolution chromatography, mass spectrometry, and bioinformatics have led to untargeted (global) and targeted (quantitative phase) approaches to identify biomarkers of radiation injury and countermeasure efficacy. Biomarkers are deemed essential for both assessing the radiation exposure levels and for extrapolative processes involved in determining scaling factors of a given radiation countering medicinal between experimental animals and humans. EXPERT OPINION The discipline of metabolomics appears to be highly informative in assessing radiation exposure levels and for identifying biomarkers of radiation injury and countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants,Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA.,Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Bene BJ, Blakely WF, Burmeister DM, Cary L, Chhetri SJ, Davis CM, Ghosh SP, Holmes-Hampton GP, Iordanskiy S, Kalinich JF, Kiang JG, Kumar VP, Lowy RJ, Miller A, Naeem M, Schauer DA, Senchak L, Singh VK, Stewart AJ, Velazquez EM, Xiao M. Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute1. Radiat Res 2021; 196:129-146. [PMID: 33979439 DOI: 10.1667/21-00064.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Chartered by the U.S. Congress in 1961, the Armed Forces Radiobiology Research Institute (AFRRI) is a Joint Department of Defense (DoD) entity with the mission of carrying out the Medical Radiological Defense Research Program in support of our military forces around the globe. In the last 60 years, the investigators at AFRRI have conducted exploratory and developmental research with broad application to the field of radiation sciences. As the only DoD facility dedicated to radiation research, AFRRI's Medical Radiobiology Advisory Team provides deployable medical and radiobiological subject matter expertise, advising commanders in the response to a U.S. nuclear weapon incident and other nuclear or radiological material incidents. AFRRI received the DoD Joint Meritorious Unit Award on February 17, 2004, for its exceptionally meritorious achievements from September 11, 2001 to June 20, 2003, in response to acts of terrorism and nuclear/radiological threats at home and abroad. In August 2009, the American Nuclear Society designated the institute a nuclear historic landmark as the U.S.'s primary source of medical nuclear and radiological research, preparedness and training. Since then, research has continued, and core areas of study include prevention, assessment and treatment of radiological injuries that may occur from exposure to a wide range of doses (low to high). AFRRI collaborates with other government entities, academic institutions, civilian laboratories and other countries to research the biological effects of ionizing radiation. Notable early research contributions were the establishment of dose limits for major acute radiation syndromes in primates, applicable to human exposures, followed by the subsequent evolution of radiobiology concepts, particularly the importance of immune collapse and combined injury. In this century, the program has been essential in the development and validation of prophylactic and therapeutic drugs, such as Amifostine, Neupogen®, Neulasta®, Nplate® and Leukine®, all of which are used to prevent and treat radiation injuries. Moreover, AFRRI has helped develop rapid, high-precision, biodosimetry tools ranging from novel assays to software decision support. New drug candidates and biological dose assessment technologies are currently being developed. Such efforts are supported by unique and unmatched radiation sources and generators that allow for comprehensive analyses across the various types and qualities of radiation. These include but are not limited to both 60Co facilities, a TRIGA® reactor providing variable mixed neutron and γ-ray fields, a clinical linear accelerator, and a small animal radiation research platform with low-energy photons. There are five major research areas at AFRRI that encompass the prevention, assessment and treatment of injuries resulting from the effects of ionizing radiation: 1. biodosimetry; 2. low-level and low-dose-rate radiation; 3. internal contamination and metal toxicity; 4. radiation combined injury; and 5. radiation medical countermeasures. These research areas are bolstered by an educational component to broadcast and increase awareness of the medical effects of ionizing radiation, in the mass-casualty scenario after a nuclear detonation or radiological accidents. This work provides a description of the military medical operations as well as the radiation facilities and capabilities present at AFRRI, followed by a review and discussion of each of the research areas.
Collapse
Affiliation(s)
| | | | | | - Lynnette Cary
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Catherine M Davis
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanchita P Ghosh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sergey Iordanskiy
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Juliann G Kiang
- Scientific Research Department.,Medicine.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | | - David A Schauer
- Radiation Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Vijay K Singh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
21
|
Singh VK, Seed TM. Repurposing Pharmaceuticals Previously Approved by Regulatory Agencies to Medically Counter Injuries Arising Either Early or Late Following Radiation Exposure. Front Pharmacol 2021; 12:624844. [PMID: 34040517 PMCID: PMC8141805 DOI: 10.3389/fphar.2021.624844] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing risks of radiological or nuclear attacks or associated accidents have served to renew interest in developing radiation medical countermeasures. The development of prospective countermeasures and the subsequent gain of Food and Drug Administration (FDA) approval are invariably time consuming and expensive processes, especially in terms of generating essential human data. Due to the limited resources for drug development and the need for expedited drug approval, drug developers have turned, in part, to the strategy of repurposing agents for which safety and clinical data are already available. Approval of drugs that are already in clinical use for one indication and are being repurposed for another indication is inherently faster and more cost effective than for new agents that lack regulatory approval of any sort. There are four known growth factors which have been repurposed in the recent past as radiomitigators following the FDA Animal Rule: Neupogen, Neulasta, Leukine, and Nplate. These four drugs were in clinic for several decades for other indications and were repurposed. A large number of additional agents approved by various regulatory authorities for given indications are currently under investigation for dual use for acute radiation syndrome or for delayed pathological effects of acute radiation exposure. The process of drug repurposing, however, is not without its own set of challenges and limitations.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|
22
|
Huang W, Yu J, Liu T, Tudor G, Defnet AE, Zalesak S, Kumar P, Booth C, Farese AM, MacVittie TJ, Kane MA. Proteomic Evaluation of the Natural History of the Acute Radiation Syndrome of the Gastrointestinal Tract in a Non-human Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing Includes Dysregulation of the Retinoid Pathway. HEALTH PHYSICS 2020; 119:604-620. [PMID: 32947489 PMCID: PMC7541663 DOI: 10.1097/hp.0000000000001351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Exposure to ionizing radiation results in injuries of the hematopoietic, gastrointestinal, and respiratory systems, which are the leading causes responsible for morbidity and mortality. Gastrointestinal injury occurs as an acute radiation syndrome. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the proteome of jejunum from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Jejunum was analyzed by liquid chromatography-tandem mass spectrometry, and pathway and gene ontology analysis were performed. A total of 3,245 unique proteins were quantified out of more than 3,700 proteins identified in this study. Also a total of 289 proteins of the quantified proteins showed significant and consistent responses across at least three time points post-irradiation, of which 263 proteins showed strong upregulations while 26 proteins showed downregulations. Bioinformatic analysis suggests significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. Canonical pathways altered by radiation included GP6 signaling pathway, acute phase response signaling, LXR/RXR activation, and intrinsic prothrombin activation pathway. Additionally, we observed dysregulation of proteins of the retinoid pathway and retinoic acid, an active metabolite of vitamin A, as quantified by liquid chromatography-tandem mass spectrometry. Correlation of changes in protein abundance with a well-characterized histological endpoint, corrected crypt number, was used to evaluate biomarker potential. These data further define the natural history of the gastrointestinal acute radiation syndrome in a non-human primate model of partial body irradiation with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Amy E Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Praveen Kumar
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room N731, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
23
|
Alterations in Tissue Metabolite Profiles with Amifostine-Prophylaxed Mice Exposed to Gamma Radiation. Metabolites 2020; 10:metabo10050211. [PMID: 32455594 PMCID: PMC7281564 DOI: 10.3390/metabo10050211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/02/2022] Open
Abstract
Acute exposure to high-dose ionizing irradiation has the potential to severely injure the hematopoietic system and its capacity to produce vital blood cells that innately serve to ward off infections and excessive bleeding. Developing a medical radiation countermeasure that can protect individuals from the damaging effects of irradiation remains a significant, unmet need and an area of great public health interest and concern. Despite significant advancements in the field of radiation countermeasure development to find a nontoxic and effective prophylactic agent for acute radiation syndrome, no such drug has yet been approved by the Food and Drug Administration. This study focuses on examining the metabolic corrections elicited by amifostine, a potent radioprotector, on tissues of vital body organs, such as the heart, spleen, and kidney. Our findings indicate that prophylaxis with this drug offers significant protection against potentially lethal radiation injury, in part, by correction of radiation-induced metabolic pathway perturbations.
Collapse
|