1
|
Villano C, Demurtas OC, Esposito S, Granell A, Rambla JL, Piombino P, Frusciante L, Carputo D, Diretto G, Aversano R. Integrative analysis of metabolome and transcriptome profiles to highlight aroma determinants in Aglianico and Falanghina grape berries. BMC PLANT BIOLOGY 2023; 23:241. [PMID: 37149574 PMCID: PMC10163809 DOI: 10.1186/s12870-023-04251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND The biochemical makeup of grape berries at harvest is essential for wine quality and depends on a fine transcriptional regulation occurring during berry development. In this study, we conducted a comprehensive survey of transcriptomic and metabolomic changes occurring in different berry tissues and developmental stages of the ancient grapes Aglianico and Falanghina to establish the patterns of the secondary metabolites contributing to their wine aroma and investigate the underlying transcriptional regulation. RESULTS Over two hundred genes related to aroma were found, of which 107 were differentially expressed in Aglianico and 99 in Falanghina. Similarly, 68 volatiles and 34 precursors were profiled in the same samples. Our results showed a large extent of transcriptomic and metabolomic changes at the level of isoprenoids (terpenes, norisoprenoids), green leaf volatiles (GLVs), and amino acid pathways, although the terpenoid metabolism was the most distinctive for Aglianico, and GLVs for Falanghina. Co-expression analysis that integrated metabolome and transcriptome data pinpointed 25 hub genes as points of biological interest in defining the metabolic patterns observed. Among them, three hub genes encoding for terpenes synthases (VvTPS26, VvTPS54, VvTPS68) in Aglianico and one for a GDP-L-galactose phosphorylase (VvGFP) in Falanghina were selected as potential active player underlying the aroma typicity of the two grapes. CONCLUSION Our data improve the understanding of the regulation of aroma-related biosynthetic pathways of Aglianico and Falanghina and provide valuable metabolomic and transcriptomic resources for future studies in these varieties.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy
| | - Olivia Costantina Demurtas
- Biotechnology Laboratory, Casaccia Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Rome, 00123, Italy
| | - Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673, km 25, Foggia, 200-71122, Italy
| | - Antonio Granell
- IBMCP Institute for Plant Molecular and Cell Biology (CSIC-UPV), Carrer de l'Enginyer Fausto Elio, s/n, Valencia, 46022, Spain
| | - José Luis Rambla
- IBMCP Institute for Plant Molecular and Cell Biology (CSIC-UPV), Carrer de l'Enginyer Fausto Elio, s/n, Valencia, 46022, Spain
| | - Paola Piombino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy
| | - Gianfranco Diretto
- Biotechnology Laboratory, Casaccia Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Rome, 00123, Italy.
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Naples, 80055, Italy.
- Department of Biology, Biochemistry and Environmental Sciences, Universitat Jaume I, Castellón de la Plana, 12071, Spain.
| |
Collapse
|