1
|
Goryca M, Zhang X, Ramberger J, Watts JD, Nisoli C, Leighton C, Schiffer P, Crooker SA. Deconstructing magnetization noise: Degeneracies, phases, and mobile fractionalized excitations in tetris artificial spin ice. Proc Natl Acad Sci U S A 2023; 120:e2310777120. [PMID: 37851675 PMCID: PMC10614600 DOI: 10.1073/pnas.2310777120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
Direct detection of spontaneous spin fluctuations, or "magnetization noise," is emerging as a powerful means of revealing and studying magnetic excitations in both natural and artificial frustrated magnets. Depending on the lattice and nature of the frustration, these excitations can often be described as fractionalized quasiparticles possessing an effective magnetic charge. Here, by combining ultrasensitive optical detection of thermodynamic magnetization noise with Monte Carlo simulations, we reveal emergent regimes of magnetic excitations in artificial "tetris ice." A marked increase of the intrinsic noise at certain applied magnetic fields heralds the spontaneous proliferation of fractionalized excitations, which can diffuse independently, without cost in energy, along specific quasi-1D spin chains in the tetris ice lattice.
Collapse
Affiliation(s)
- Mateusz Goryca
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, NM87545
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw02-093, Poland
| | - Xiaoyu Zhang
- Department of Applied Physics, Yale University, New Haven, CT06520
| | - Justin Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Justin D. Watts
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN55455
| | - Cristiano Nisoli
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM87545
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Peter Schiffer
- Department of Applied Physics, Yale University, New Haven, CT06520
- Department of Physics, Yale University, New Haven, CT06520
| | - Scott A. Crooker
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, NM87545
| |
Collapse
|
2
|
King AD, Coraux J, Canals B, Rougemaille N. Magnetic Arctic Circle in a Square Ice Qubit Lattice. PHYSICAL REVIEW LETTERS 2023; 131:166701. [PMID: 37925737 DOI: 10.1103/physrevlett.131.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
Under certain boundary conditions, the square ice model exhibits a phase separation in which the core of the system is disordered while its outer region remains ordered. This phenomenon, known as the "arctic circle," has been studied theoretically in combinatorial mathematics and statistical mechanics. Here, we realize the physics of the arctic circle experimentally for the first time, using a programmable lattice of superconducting qubits, and investigate its properties under the prism of a highly frustrated magnet. Our work reveals two unexpected properties. First, the disordered spin manifold confined within the arctic curve is a spin liquid whose average spin texture resembles that of an antivortex, i.e., it is a topologically charged Coulomb phase. Second, monopole quasiparticle excitations, which are totally absent in theoretical works, can be isolated in a phase-separated system. Remarkably, a monopole segregation mechanism is observed, in which the monopoles are sorted according to the magnetic charge and magnetic moment they carry, without the application of an external driving force.
Collapse
Affiliation(s)
- A D King
- D-Wave Systems, Burnaby, British Columbia V5G 4M9, Canada
| | - J Coraux
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France
| | - B Canals
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France
| | - N Rougemaille
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France
| |
Collapse
|
3
|
Competition of Magnetic Anisotropies in Permalloy Antidot Lattices. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antidot lattices made of magnetic thin films are good candidates to be employed in future magnetic recording media. In this manuscript we present a study on the effect of shape and field-induced magnetic anisotropies on the magnetization reversal of 10 nm and 50 nm thick permalloy antidot lattices. Rounded antidot square lattices were fabricated using a combination of electron beam evaporation and laser interference lithography, covering surfaces of a few cm2. We demonstrate that a magnetic anisotropy induced in the samples, as a consequence of an applied magnetic field during growth, competes with the shape anisotropy that dominates the response of the patterned thin films, and that the effect of the field-induced magnetic anisotropy scales with the thickness of the antidot thin films. Finally, we have quantified the anisotropy constant attributable to the uniaxial field-induced magnetic anisotropy in our antidot lattices. These findings are supported by micromagnetic simulations performed using MuMax3.
Collapse
|
4
|
Bingham NS, Rooke S, Park J, Simon A, Zhu W, Zhang X, Batley J, Watts JD, Leighton C, Dahmen KA, Schiffer P. Experimental Realization of the 1D Random Field Ising Model. PHYSICAL REVIEW LETTERS 2021; 127:207203. [PMID: 34860045 DOI: 10.1103/physrevlett.127.207203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
We have measured magnetic-field-induced avalanches in a square artificial spin ice array of interacting nanomagnets. Starting from the ground state ordered configuration, we imaged the individual nanomagnet moments after each successive application of an incrementally increasing field. The statistics of the evolution of the moment configuration show good agreement with the canonical one-dimensional random field Ising model. We extract information about the microscopic structure of the arrays from our macroscopic measurements of their collective behavior, demonstrating a process that could be applied to other systems exhibiting avalanches.
Collapse
Affiliation(s)
- N S Bingham
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - S Rooke
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - J Park
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - A Simon
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - W Zhu
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - X Zhang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - J Batley
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J D Watts
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - C Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - K A Dahmen
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - P Schiffer
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
5
|
Controlled creation and annihilation of isolated robust emergent magnetic monopole like charged vertices in square artificial spin ice. Sci Rep 2021; 11:13593. [PMID: 34193911 PMCID: PMC8245615 DOI: 10.1038/s41598-021-92877-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Magnetic analogue of an isolated free electric charge, i.e., a magnet with a single north or south pole, is a long sought-after particle which remains elusive so far. In magnetically frustrated pyrochlore solids, a classical analogue of monopole was observed as a result of excitation of spin ice vertices. Direct visualization of such excitations were proposed and later confirmed in analogous artificial spin ice (ASI) systems of square as well as Kagome geometries. However, such magnetically charged vertices are randomly created as they are thermally driven and are always associated with corresponding equal and opposite emergent charges, often termed as monopole–antimonopole pairs, connected by observable strings. Here, we demonstrate a controlled stabilisation of a robust isolated emergent monopole-like magnetically charged vertices in individual square ASI systems by application of an external magnetic field. The excitation conserves the magnetic charge without the involvement of a corresponding excitation of opposite charge. Well supported by Monte Carlo simulations our experimental results enable, in absence of a true elemental magnetic monopole, creation of electron vortices and studying electrodynamics in presence of a monopole-like field in a solid state environment.
Collapse
|
6
|
Magnetization dynamics of weakly interacting sub-100 nm square artificial spin ices. Sci Rep 2019; 9:19967. [PMID: 31882867 PMCID: PMC6934880 DOI: 10.1038/s41598-019-56219-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/06/2019] [Indexed: 12/02/2022] Open
Abstract
Artificial Spin Ice (ASI), consisting of a two dimensional array of nanoscale magnetic elements, provides a fascinating opportunity to observe the physics of out-of-equilibrium systems. Initial studies concentrated on the static, frozen state, whilst more recent studies have accessed the out-of-equilibrium dynamic, fluctuating state. This opens up exciting possibilities such as the observation of systems exploring their energy landscape through monopole quasiparticle creation, potentially leading to ASI magnetricity, and to directly observe unconventional phase transitions. In this work we have measured and analysed the magnetic relaxation of thermally active ASI systems by means of SQUID magnetometry. We have investigated the effect of the interaction strength on the magnetization dynamics at different temperatures in the range where the nanomagnets are thermally active. We have observed that they follow an Arrhenius-type Néel-Brown behaviour. An unexpected negative correlation of the average blocking temperature with the interaction strength is also observed, which is supported by Monte Carlo simulations. The magnetization relaxation measurements show faster relaxation for more strongly coupled nanoelements with similar dimensions. The analysis of the stretching exponents obtained from the measurements suggest 1-D chain-like magnetization dynamics. This indicates that the nature of the interactions between nanoelements lowers the dimensionality of the ASI from 2-D to 1-D. Finally, we present a way to quantify the effective interaction energy of a square ASI system, and compare it to the interaction energy computed with micromagnetic simulations.
Collapse
|