1
|
Pandey AK, Buchholz CR, Nathan Kochen N, Pomerantz WCK, Braun AR, Sachs JN. pH Effects Can Dominate Chemical Shift Perturbations in 1H, 15N-HSQC NMR Spectroscopy for Studies of Small Molecule/α-Synuclein Interactions. ACS Chem Neurosci 2023; 14:800-808. [PMID: 36749138 DOI: 10.1021/acschemneuro.2c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1H,15N-Heteronuclear Single Quantum Coherence (HSQC) NMR is a powerful technique that has been employed to characterize small-molecule interactions with intrinsically disordered monomeric α-Synuclein (aSyn). We report how solution pH can impact the interpretation of aSyn HSQC NMR spectra and demonstrate that small-molecule formulations (e.g., complexation with acidic salts) can lower sample pH and confound interpretation of drug binding and concomitant protein structural changes. Through stringent pH control, we confirm that several previously identified compounds (EGCG, Baicalin, and Dopamine (DOPA)) as well as a series of potent small-molecule inhibitors of aSyn pathology (Demeclocycline, Ro90-7501, and (±)-Bay K 8644) are capable of direct target engagement of aSyn. Previously, DOPA-aSyn interactions have been shown to elicit a dramatic chemical shift perturbation (CSP) localized to aSyn's H50 at low DOPA concentrations then expanding to aSyn's acidic C-terminal residues at increasing DOPA levels. Interestingly, this CSP profile mirrors our pH titration, where a small reduction in pH affects H50 CSP, and large pH changes induce robust C-terminal CSP. In contrast, under tightly controlled pH 5.0, DOPA induces significant CSPs observed at both ionizable and nonionizable residues. These results suggest that previous interpretations of DOPA-aSyn interactions were conflated with pH-induced CSP, highlighting the need for stringent pH control to minimize potential false-positive interpretations of ligand interactions in HSQC NMR experiments. Furthermore, DOPA's preferential interaction with aSyn under acidic pH represents a novel understanding of DOPA-aSyn interactions that may provide insight into the potential gain of toxic function of aSyn misfolding in α-synucleinopathies.
Collapse
Affiliation(s)
- Anil K Pandey
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Caroline R Buchholz
- Dept. of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Noah Nathan Kochen
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Dept. of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Dept. of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anthony R Braun
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N Sachs
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Braun AR, Kochen NN, Yuen SL, Liao EE, Cornea RL, Thomas DD, Sachs JN. Advancements in a FRET Biosensor for Live-Cell Fluorescence-Lifetime High-Throughput Screening of Alpha-Synuclein. ASN Neuro 2023; 15:17590914231184086. [PMID: 37428128 PMCID: PMC10338669 DOI: 10.1177/17590914231184086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
There is a critical need for small molecules capable of rescuing pathophysiological phenotypes induced by alpha-synuclein (aSyn) misfolding and oligomerization. Building upon our previous aSyn cellular fluorescence lifetime (FLT)-Förster resonance energy transfer (FRET) biosensors, we have developed an inducible cell model incorporating the red-shifted mCyRFP1/mMaroon1 (OFP/MFP) FRET pair. This new aSyn FRET biosensor improves the signal-to-noise ratio, reduces nonspecific background FRET, and results in a 4-fold increase (transient transfection) and 2-fold increase (stable, inducible cell lines) in FRET signal relative to our previous GFP/RFP aSyn biosensors. The inducible system institutes greater temporal control and scalability, allowing for fine-tuning of biosensor expression and minimizes cellular cytotoxicity due to overexpression of aSyn. Using these inducible aSyn-OFP/MFP biosensors, we screened the Selleck library of 2684 commercially available, FDA-approved compounds and identified proanthocyanidins and casanthranol as novel hits. Secondary assays validated the ability of these compounds to modulate aSyn FLT-FRET. Functional assays probing cellular cytotoxicity and aSyn fibrillization demonstrated their capability to inhibit seeded aSyn fibrillization. Proanthocyanidins completely rescued aSyn fibril-induced cellular toxicity with EC50 of 200 nM and casanthranol supported a 85.5% rescue with a projected EC50 of 34.2 μM. Furthermore, proanthocyanidins provide a valuable tool compound to validate our aSyn biosensor performance in future high-throughput screening campaigns of industrial-scale (million-compound) chemical libraries.
Collapse
Affiliation(s)
| | | | | | | | - Razvan L. Cornea
- University of Minnesota, Minneapolis, MN, USA
- Photonic Pharma LLC, Minneapolis, MN, USA
| | - David D. Thomas
- University of Minnesota, Minneapolis, MN, USA
- Photonic Pharma LLC, Minneapolis, MN, USA
| | | |
Collapse
|
3
|
Controlling amyloid formation of intrinsically disordered proteins and peptides: slowing down or speeding up? Essays Biochem 2022; 66:959-975. [PMID: 35975807 DOI: 10.1042/ebc20220046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022]
Abstract
The pathological assembly of intrinsically disordered proteins/peptides (IDPs) into amyloid fibrils is associated with a range of human pathologies, including neurodegeneration, metabolic diseases and systemic amyloidosis. These debilitating disorders affect hundreds of millions of people worldwide, and the number of people affected is increasing sharply. However, the discovery of therapeutic agents has been immensely challenging largely because of (i) the diverse number of aggregation pathways and the multi-conformational and transient nature of the related proteins or peptides and (ii) the under-development of experimental pipelines for the identification of disease-modifying molecules and their mode-of-action. Here, we describe current approaches used in the search for small-molecule modulators able to control or arrest amyloid formation commencing from IDPs and review recently reported accelerators and inhibitors of amyloid formation for this class of proteins. We compare their targets, mode-of-action and effects on amyloid-associated cytotoxicity. Recent successes in the control of IDP-associated amyloid formation using small molecules highlight exciting possibilities for future intervention in protein-misfolding diseases, despite the challenges of targeting these highly dynamic precursors of amyloid assembly.
Collapse
|
4
|
Berkeley RF, Debelouchina GT. Chemical tools for study and modulation of biomolecular phase transitions. Chem Sci 2022; 13:14226-14245. [PMID: 36545140 PMCID: PMC9749140 DOI: 10.1039/d2sc04907d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Biomolecular phase transitions play an important role in organizing cellular processes in space and time. Methods and tools for studying these transitions, and the intrinsically disordered proteins (IDPs) that often drive them, are typically less developed than tools for studying their folded protein counterparts. In this perspective, we assess the current landscape of chemical tools for studying IDPs, with a specific focus on protein liquid-liquid phase separation (LLPS). We highlight methodologies that enable imaging and spectroscopic studies of these systems, including site-specific labeling with small molecules and the diverse range of capabilities offered by inteins and protein semisynthesis. We discuss strategies for introducing post-translational modifications that are central to IDP and LLPS function and regulation. We also investigate the nascent field of noncovalent small-molecule modulators of LLPS. We hope that this review of the state-of-the-art in chemical tools for interrogating IDPs and LLPS, along with an associated perspective on areas of unmet need, can serve as a valuable and timely resource for these rapidly expanding fields of study.
Collapse
Affiliation(s)
- Raymond F Berkeley
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA USA
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA USA
| |
Collapse
|
5
|
Fongaro B, Cappelletto E, Sosic A, Spolaore B, de Polverino de Laureto P. 3,4-Dihydroxyphenylethanol and 3,4-dihydroxyphenylacetic acid affect the aggregation process of E46K variant of α-synuclein at different extent: Insights into the interplay between protein dynamics and catechol effect. Protein Sci 2022; 31:e4356. [PMID: 35762714 PMCID: PMC9202543 DOI: 10.1002/pro.4356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is a chronic multifactorial disease, whose etiology is not completely understood. The amyloid aggregation of α-synuclein (Syn) is considered a major cause in the development of the disease. The presence of genetic mutations can boost the aggregation of the protein and the likelihood to develop PD. These mutations can lead to early onset (A30P, E46K, and A53T) or late-onset (H50Q) forms of PD. The disease is also linked to an increase in oxidative stress and altered levels of dopamine metabolites. The molecular interaction of these molecules with Syn has been previously studied, while their effect on the pathological mutant structure and function is not completely clarified. By using biochemical and biophysical approaches, here we have studied the interaction of the familial variant E46K with two dopamine-derived catechols, 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylethanol. We show that the presence of these catechols causes a decrease in the formation of amyloid fibrils in a dose-dependent manner. Native- and Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) provide evidence that this effect is strongly conformation dependent. Indeed, these molecules interact differently with the interconverting conformers of Syn and its familial variant E46K in solution, selecting the most prone-to-aggregation one, confining it into an off-pathway oligomer. These findings suggest that catechols could be a molecular scaffold for the design of compounds potentially useful in the treatment of Parkinson's disease and related conditions.
Collapse
Affiliation(s)
- Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Elia Cappelletto
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Alice Sosic
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Barbara Spolaore
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | | |
Collapse
|
6
|
Lehrer S, Rheinstein PH. α-synuclein enfolds tyrosine hydroxylase and dopamine ß-hydroxylase, potentially reducing dopamine and norepinephrine synthesis. JOURNAL OF PROTEINS AND PROTEOMICS 2022; 13:109-115. [PMID: 36277464 PMCID: PMC9585989 DOI: 10.1007/s42485-022-00088-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Parkinson's disease (PD) results from degeneration of dopamine and norepinephrine neurons due to α-synuclein aggregates that likely have their origin in the gut. Tyrosine hydroxylase (TH) catalyses the formation of L-DOPA, the rate-limiting step in the biosynthesis of dopamine. A second enzyme, DOPA decarboxylase (DDC), catalyzes the conversion of L-DOPA to dopamine. A third enzyme, dopamine ß-hydroxylase (DBH), catalyzes the conversion of dopamine to norepinephrine. To analyze possible interactions of α-synuclein with TH, DDC and DBH, we performed in silico protein-protein docking. METHODS Protein data bank (pdb) entries were searched on the RCSB Protein Data Bank. We identified four structures that allowed us to examine the relationship of α-synuclein with TH, DDC, and DBH: (1) Human micelle-bound alpha-synuclein, (2) solution structure of the regulatory domain of tyrosine hydroxylase (Rattus norvegicus), (3) crystal structure of human aromatic L-amino acid decarboxylase (DOPA decarboxylase) in the apo form and (4) crystal structure of human dopamine ß-hydroxylase at 2.9 angstrom resolution. We used the ClusPro server (https://cluspro.org) for protein-protein docking. The protein structures were visualized with PyMOL v 2.3.4. RESULTS α-synuclein partially enfolds tyrosine hydroxylase and dopamine ß-hydroxylase, potentially reducing dopamine and norepinephrine synthesis. α-synuclein may dock too far away from DOPA decarboxylase to affect its function directly. CONCLUSIONS Our in silico finding of α-synuclein partly enfolding tyrosine hydroxylase and dopamine ß-hydroxylase suggests that α-synuclein docking inhibition could increase dopamine and norepinephrine biosynthesis, ameliorating PD symptoms. Small molecules that bind to α-synuclein have already been identified. Further studies may lead to new small molecule drugs that block α-synuclein enfolding of tyrosine hydroxylase and dopamine ß-hydroxylase.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, 1 Gustave L. Levy Place, Box 1236, New York, NY 10029, USA
| | | |
Collapse
|
7
|
α-Synuclein at the Presynaptic Axon Terminal as a Double-Edged Sword. Biomolecules 2022; 12:biom12040507. [PMID: 35454096 PMCID: PMC9029495 DOI: 10.3390/biom12040507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
α-synuclein (α-syn) is a presynaptic, lipid-binding protein strongly associated with the neuropathology observed in Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and Alzheimer’s Disease (AD). In normal physiology, α-syn plays a pivotal role in facilitating endocytosis and exocytosis. Interestingly, mutations and modifications of precise α-syn domains interfere with α-syn oligomerization and nucleation that negatively affect presynaptic vesicular dynamics, protein expressions, and mitochondrial profiles. Furthermore, the integration of the α-syn oligomers into the presynaptic membrane results in pore formations, ion influx, and excitotoxicity. Targeted therapies against specific domains of α-syn, including the use of small organic molecules, monoclonal antibodies, and synthetic peptides, are being screened and developed. However, the prospect of an effective α-syn targeted therapy is still plagued by low permeability across the blood–brain barrier (BBB), and poor entry into the presynaptic axon terminals. The present review proposes a modification of current strategies, which includes the use of novel encapsulation technology, such as lipid nanoparticles, to bypass the BBB and deliver such agents into the brain.
Collapse
|
8
|
Reimer L, Haikal C, Gram H, Theologidis V, Kovacs G, Ruesink H, Baun A, Nielsen J, Otzen DE, Li JY, Jensen PH. Low dose DMSO treatment induces oligomerization and accelerates aggregation of α-synuclein. Sci Rep 2022; 12:3737. [PMID: 35260646 PMCID: PMC8904838 DOI: 10.1038/s41598-022-07706-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 02/10/2022] [Indexed: 01/05/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is a highly utilized small molecule that serves many purposes in scientific research. DMSO offers unique polar, aprotic and amphiphilic features, which makes it an ideal solvent for a wide variety of both polar and nonpolar molecules. Furthermore, DMSO is often used as a cryoprotectant in cell-based research. However, recent reports suggest that DMSO, even at low concentration, might interfere with important cellular processes, and cause macromolecular changes to proteins where a shift from α-helical to β-sheet structure can be observed. To investigate how DMSO might influence current research, we assessed biochemical and cellular impacts of DMSO treatment on the structure of the aggregation-prone protein α-synuclein, which plays a central role in the etiology of Parkinson’s disease, and other brain-related disorders, collectively termed the synucleinopathies. Here, we found that addition of DMSO increased the particle-size of α-synuclein, and accelerated the formation of seeding-potent fibrils in a dose-dependent manner. These fibrils made in the presence of DMSO were indistinguishable from fibrils made in pure PBS, when assessed by proteolytic digestion, cytotoxic profile and their ability to seed cellular aggregation of α-synuclein. Moreover, as evident through binding to the MJFR-14-6-4-2 antibody, which preferentially recognizes aggregated forms of α-synuclein, and a bimolecular fluorescence complementation assay, cells exposed to DMSO experienced increased aggregation of α-synuclein. However, no observable α-synuclein abnormalities nor differences in neuronal survival were detected after oral DMSO-treatment in either C57BL/6- or α-synuclein transgenic F28 mice. In summary, we demonstrate that low concentrations of DMSO makes α-synuclein susceptible to undergo aggregation both in vitro and in cells. This may affect experimental outcomes when studying α-synuclein in the presence of DMSO, and should call for careful consideration when such experiments are planned.
Collapse
Affiliation(s)
- Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hjalte Gram
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vasileios Theologidis
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Gergo Kovacs
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Harm Ruesink
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Andreas Baun
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center - iNANO, Aarhus University, Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center - iNANO, Aarhus University, Aarhus C, Denmark
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Institute of Health Sciences, China Medical University, 110112, Shenyang, People's Republic of China
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
9
|
Lima VDA, Esquinelato R, Carmo-Gonçalves P, Nascimento LAD, Lee H, Eliezer D, Romão L, Follmer C. The dopamine receptor agonist apomorphine stabilizes neurotoxic α-synuclein oligomers. FEBS Lett 2022; 596:309-322. [PMID: 34928512 PMCID: PMC8972942 DOI: 10.1002/1873-3468.14263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
The misfolding and aggregation of the protein α-synuclein (aSyn) into potentially neurotoxic oligomers is believed to play a pivotal role in the neuropathogenesis of Parkinson's disease (PD). Herein, we explore how apomorphine (Apo), a nonselective dopamine D1 and D2 receptor agonist utilized in the therapy for PD, affects the aggregation and toxicity of aSyn in vitro. Our data indicated that Apo inhibits aSyn fibrillation leading to the formation of large oligomeric species (Apo-aSyn-O), which exhibit remarkable toxicity in mesencephalic dopaminergic neurons in primary cultures. Interestingly, purified Apo-aSyn-O, even at very low concentrations, seems to be capable of converting unmodified aSyn monomer into neurotoxic species. Collectively, our findings warn for a possible dangerous effect of Apo on aSyn misfolding/aggregation pathway.
Collapse
Affiliation(s)
- Vanderlei de Araujo Lima
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Esquinelato
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Phelippe Carmo-Gonçalves
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hudson Lee
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Luciana Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristian Follmer
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Quaglia F, Mészáros B, Salladini E, Hatos A, Pancsa R, Chemes LB, Pajkos M, Lazar T, Peña-Díaz S, Santos J, Ács V, Farahi N, Fichó E, Aspromonte M, Bassot C, Chasapi A, Davey N, Davidović R, Dobson L, Elofsson A, Erdős G, Gaudet P, Giglio M, Glavina J, Iserte J, Iglesias V, Kálmán Z, Lambrughi M, Leonardi E, Longhi S, Macedo-Ribeiro S, Maiani E, Marchetti J, Marino-Buslje C, Mészáros A, Monzon A, Minervini G, Nadendla S, Nilsson JF, Novotný M, Ouzounis C, Palopoli N, Papaleo E, Pereira P, Pozzati G, Promponas V, Pujols J, Rocha AS, Salas M, Sawicki LR, Schad E, Shenoy A, Szaniszló T, Tsirigos K, Veljkovic N, Parisi G, Ventura S, Dosztányi Z, Tompa P, Tosatto SCE, Piovesan D. DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Res 2022; 50:D480-D487. [PMID: 34850135 PMCID: PMC8728214 DOI: 10.1093/nar/gkab1082] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023] Open
Abstract
The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.
Collapse
Affiliation(s)
- Federica Quaglia
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Edoardo Salladini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - András Hatos
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 Buenos Aires, Argentina
| | - Mátyás Pajkos
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/c, Budapest H-1117, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnology, Brussels, Belgium
- Structural Biology Brussels (SBB), Bioengineering Sciences Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Veronika Ács
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Nazanin Farahi
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnology, Brussels, Belgium
- Structural Biology Brussels (SBB), Bioengineering Sciences Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erzsébet Fichó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
- Cytocast Kft., Vecsés, Hungary
| | - Maria Cristina Aspromonte
- Department of Woman and Child Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Claudio Bassot
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 21 Solna, Sweden
| | - Anastasia Chasapi
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thermi, Thessalonica 57001, Greece
| | - Norman E Davey
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London, UK
| | - Radoslav Davidović
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000Belgrade, Serbia
| | - Laszlo Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Arne Elofsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 21 Solna, Sweden
| | - Gábor Erdős
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/c, Budapest H-1117, Hungary
| | - Pascale Gaudet
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Michelle Giglio
- Institute for Genome Sciences, University of Maryland School of Medicine 670 W. Baltimore St., Baltimore, MD 21201, USA
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 Buenos Aires, Argentina
| | - Javier Iserte
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, C1405BWE, Argentina
| | - Valentín Iglesias
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zsófia Kálmán
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083 Budapest, Hungary
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Emanuela Leonardi
- Department of Woman and Child Health, University of Padova, Padova, Italy
- Pediatric Research Institute, Città della Speranza, Padova, Italy
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288, Marseille, France
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Emiliano Maiani
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Buenos Aires B1876BXD, Argentina
| | | | - Attila Mészáros
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnology, Brussels, Belgium
- Structural Biology Brussels (SBB), Bioengineering Sciences Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | - Suvarna Nadendla
- Institute for Genome Sciences, University of Maryland School of Medicine 670 W. Baltimore St., Baltimore, MD 21201, USA
| | - Juliet F Nilsson
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288, Marseille, France
| | - Marian Novotný
- Dep. of Cell Biology, Faculty of Science, Vinicna 7, 128 43, Prague, Czech Republic
| | - Christos A Ouzounis
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thermi, Thessalonica 57001, Greece
- Biological Computation & Computational Biology Group, Artificial Intelligence & Information Analysis Lab, Department of Computer Science, Aristotle University of Thessalonica, Thessalonica 54124, Greece
| | - Nicolás Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Buenos Aires B1876BXD, Argentina
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Gabriele Pozzati
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 21 Solna, Sweden
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Martin Salas
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Buenos Aires B1876BXD, Argentina
| | - Luciana Rodriguez Sawicki
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Buenos Aires B1876BXD, Argentina
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Aditi Shenoy
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 21 Solna, Sweden
| | - Tamás Szaniszló
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/c, Budapest H-1117, Hungary
| | - Konstantinos D Tsirigos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Nevena Veljkovic
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000Belgrade, Serbia
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Buenos Aires B1876BXD, Argentina
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/c, Budapest H-1117, Hungary
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnology, Brussels, Belgium
- Structural Biology Brussels (SBB), Bioengineering Sciences Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Abstract
Parkinson’s disease, the second most prevalent neurodegenerative disorder worldwide, is characterized by a progressive loss of dopaminergic neurons in substantia nigra pars compacta, causing motor symptoms. This disorder’s main hallmark is the formation of intraneuronal protein inclusions, named Lewy bodies and neurites. The major component of these arrangements is α-synuclein, an intrinsically disordered and soluble protein that, in pathological conditions, can form toxic and cell-to-cell transmissible amyloid structures. Preventing α-synuclein aggregation has attracted significant effort in the search for a disease-modifying therapy for Parkinson’s disease. Small molecules like SynuClean-D, epigallocatechin gallate, trodusquemine, or anle138b exemplify this therapeutic potential. Here, we describe a subset of compounds containing a single aromatic ring, like dopamine, ZPDm, gallic acid, or entacapone, which act as molecular chaperones against α-synuclein aggregation. The simplicity of their structures contrasts with the complexity of the aggregation process, yet the block efficiently α-synuclein assembly into amyloid fibrils, in many cases, redirecting the reaction towards the formation of non-toxic off-pathway oligomers. Moreover, some of these compounds can disentangle mature α-synuclein amyloid fibrils. Their simple structures allow structure-activity relationship analysis to elucidate the role of different functional groups in the inhibition of α-synuclein aggregation and fibril dismantling, making them informative lead scaffolds for the rational development of efficient drugs.
Collapse
Affiliation(s)
- Samuel Pena-DIaz
- Institut de Biotecnologia i Biomedicina; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Haque ME, Akther M, Azam S, Kim IS, Lin Y, Lee YH, Choi DK. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease. Br J Pharmacol 2021; 179:23-45. [PMID: 34528272 DOI: 10.1111/bph.15684] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Lewy bodies that contain aggregated α-synuclein (α-syn) in the dopaminergic (DA) neuron are the main culprit behind neurodegeneration in Parkinson's disease (PD). Besides, mitochondrial dysfunction has a well established and prominent role in the pathogenesis of PD. However, the exact mechanism by which α-syn causes dopaminergic neuronal loss was unclear. Recent evidence suggests that aggregated α-syn localises in the mitochondria and contributes to oxidative stress-mediated apoptosis in neurons. Therefore, the involvement of aggregated α-syn in mitochondrial dysfunction-mediated neuronal loss has made it an emerging drug target for the treatment of PD. However, the exact mechanism by which α-syn permeabilises through the mitochondrial membrane and affects the electron transport chain remains under investigation. In the present study, we describe mitochondria-α-syn interactions and how α-syn aggregation modulates mitochondrial homeostasis in PD pathogenesis. We also discuss recent therapeutic interventions targeting α-syn aggregation that may help researchers to design novel therapeutic treatments for PD.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea.,Department of Bio-analytical Science, University of Science and Technology, Daejeon, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.,Research Headquarters, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea.,Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
13
|
Evolution of biophysical tools for quantitative protein interactions and drug discovery. Emerg Top Life Sci 2021; 5:1-12. [PMID: 33739398 DOI: 10.1042/etls20200258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
With millions of signalling events occurring simultaneously, cells process a continuous flux of information. The genesis, processing, and regulation of information are dictated by a huge network of protein interactions. This is proven by the fact that alterations in the levels of proteins, single amino acid changes, post-translational modifications, protein products arising out of gene fusions alter the interaction landscape leading to diseases such as congenital disorders, deleterious syndromes like cancer, and crippling diseases like the neurodegenerative disorders which are often fatal. Needless to say, there is an immense effort to understand the biophysical basis of such direct interactions between any two proteins, the structure, domains, and sequence motifs involved in tethering them, their spatio-temporal regulation in cells, the structure of the network, and their eventual manipulation for intervention in diseases. In this chapter, we will deliberate on a few techniques that allow us to dissect the thermodynamic and kinetic aspects of protein interaction, how innovation has rendered some of the traditional techniques applicable for rapid analysis of multiple samples using small amounts of material. These advances coupled with automation are catching up with the genome-wide or proteome-wide studies aimed at identifying new therapeutic targets. The chapter will also summarize how some of these techniques are suited either in the standalone mode or in combination with other biophysical techniques for the drug discovery process.
Collapse
|
14
|
|
15
|
Tao J, Berthet A, Citron YR, Tsiolaki PL, Stanley R, Gestwicki JE, Agard DA, McConlogue L. Hsp70 chaperone blocks α-synuclein oligomer formation via a novel engagement mechanism. J Biol Chem 2021; 296:100613. [PMID: 33798554 PMCID: PMC8102405 DOI: 10.1016/j.jbc.2021.100613] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Overexpression and aggregation of α-synuclein (ASyn) are linked to the onset and pathology of Parkinson's disease and related synucleinopathies. Elevated levels of the stress-induced chaperone Hsp70 protect against ASyn misfolding and ASyn-driven neurodegeneration in cell and animal models, yet there is minimal mechanistic understanding of this important protective pathway. It is generally assumed that Hsp70 binds to ASyn using its canonical and promiscuous substrate-binding cleft to limit aggregation. Here we report that this activity is due to a novel and unexpected mode of Hsp70 action, involving neither ATP nor the typical substrate-binding cleft. We use novel ASyn oligomerization assays to show that Hsp70 directly blocks ASyn oligomerization, an early event in ASyn misfolding. Using truncations, mutations, and inhibitors, we confirm that Hsp70 interacts with ASyn via an as yet unidentified, noncanonical interaction site in the C-terminal domain. Finally, we report a biological role for a similar mode of action in H4 neuroglioma cells. Together, these findings suggest that new chemical approaches will be required to target the Hsp70-ASyn interaction in synucleinopathies. Such approaches are likely to be more specific than targeting Hsp70's canonical action. Additionally, these results raise the question of whether other misfolded proteins might also engage Hsp70 via the same noncanonical mechanism.
Collapse
Affiliation(s)
- Jiahui Tao
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Amandine Berthet
- Gladstone Institute of Neurological Disease, The Gladstone Institutes, San Francisco, California, USA
| | - Y Rose Citron
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Paraskevi L Tsiolaki
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Robert Stanley
- Gladstone Institute of Neurological Disease, The Gladstone Institutes, San Francisco, California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases and UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| | - Lisa McConlogue
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Neurological Disease, The Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
16
|
Filippou PS, Outeiro TF. Cancer and Parkinson's Disease: Common Targets, Emerging Hopes. Mov Disord 2020; 36:340-346. [PMID: 33346940 DOI: 10.1002/mds.28425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer and neurodegeneration are two major leading causes of morbidity and death worldwide. At first sight, the two fields do not seem to share much in common and, if anything, might be placed on opposite ends of a spectrum. Although neurodegeneration results in excessive neuronal cell death, cancer emerges from increased proliferation and resistance to cell death. Therefore, one might expect significant differences in the underlying pathophysiological mechanisms. However, the more we deepen our understanding of these two types of diseases, the more we appreciate the unexpected overlap between them. Although most epidemiological studies support an inverse association between the risk for development of neurodegenerative diseases and cancer, increasing evidence points to a positive correlation between specific types of cancer, like melanoma, and neurodegenerative diseases, like Parkinson's disease (PD). We believe that deciphering the molecular processes and pathways underlying one of these diseases may significantly increase our understanding about the other. Therefore, the identification of novel biomarkers and therapeutic approaches in cancer, may lead to improved diagnosis and treatment of neurodegeneration, and vice versa. In this Viewpoint, we summarize recent findings connecting both diseases and speculate that insights from one disease may inform on mechanisms, and help identify novel biomarkers and targets for intervention, possibly leading to improved management of both diseases. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Panagiota S Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Peña-Díaz S, Pujols J, Pinheiro F, Santos J, Pallarés I, Navarro S, Conde-Gimenez M, García J, Salvatella X, Dalfó E, Sancho J, Ventura S. Inhibition of α-Synuclein Aggregation and Mature Fibril Disassembling With a Minimalistic Compound, ZPDm. Front Bioeng Biotechnol 2020; 8:588947. [PMID: 33178678 PMCID: PMC7597392 DOI: 10.3389/fbioe.2020.588947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Synucleinopathies are a group of disorders characterized by the accumulation of α-Synuclein amyloid inclusions in the brain. Preventing α-Synuclein aggregation is challenging because of the disordered nature of the protein and the stochastic nature of fibrillogenesis, but, at the same time, it is a promising approach for therapeutic intervention in these pathologies. A high-throughput screening initiative allowed us to discover ZPDm, the smallest active molecule in a library of more than 14.000 compounds. Although the ZPDm structure is highly related to that of the previously described ZPD-2 aggregation inhibitor, we show here that their mechanisms of action are entirely different. ZPDm inhibits the aggregation of wild-type, A30P, and H50Q α-Synuclein variants in vitro and interferes with α-Synuclein seeded aggregation in protein misfolding cyclic amplification assays. However, ZPDm distinctive feature is its strong potency to dismantle preformed α-Synuclein amyloid fibrils. Studies in a Caenorhabditis elegans model of Parkinson's Disease, prove that these in vitro properties are translated into a significant reduction in the accumulation of α-Synuclein inclusions in ZPDm treated animals. Together with previous data, the present work illustrates how different chemical groups on top of a common molecular scaffold can result in divergent but complementary anti-amyloid activities.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irantzu Pallarés
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Conde-Gimenez
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, and Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Esther Dalfó
- Medicine, M2, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Javier Sancho
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, and Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
18
|
Grozdanov V, Danzer KM. Intracellular Alpha-Synuclein and Immune Cell Function. Front Cell Dev Biol 2020; 8:562692. [PMID: 33178682 PMCID: PMC7594520 DOI: 10.3389/fcell.2020.562692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
Intracellular alpha-synuclein has numerous effects on different functions of the cell. Although it is expressed in a wide spectrum of cell types from different lineages, most of our knowledge about it was generated by studying neuronal or glial cells. However, the role of immune cells in Parkinson's disease and related synucleinopathies has recently emerged. Altered immune cell phenotypes and functions have been reported not only in animal models, but also in human disease. While the response of immune cells to extracellular alpha-synuclein has been thoroughly studied, insights into the effects of endogenously expressed or taken-up alpha-synuclein on the function of immune cells remain scarce. Such insights may prove to be important for understanding the complex cellular and molecular events resulting in neurodegeneration and aid the development of novel therapies. We review the current state of knowledge about how alpha-synuclein and its pathologic manifestations affect the phenotype and function of peripheral and central nervous system (CNS) immune cells, and discuss the potential of this topic for advancing our understanding of synucleinopathies.
Collapse
|