1
|
De la Fuente IM, Carrasco-Pujante J, Camino-Pontes B, Fedetz M, Bringas C, Pérez-Samartín A, Pérez-Yarza G, López JI, Malaina I, Cortes JM. Systemic cellular migration: The forces driving the directed locomotion movement of cells. PNAS NEXUS 2024; 3:pgae171. [PMID: 38706727 PMCID: PMC11067954 DOI: 10.1093/pnasnexus/pgae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Directional motility is an essential property of cells. Despite its enormous relevance in many fundamental physiological and pathological processes, how cells control their locomotion movements remains an unresolved question. Here, we have addressed the systemic processes driving the directed locomotion of cells. Specifically, we have performed an exhaustive study analyzing the trajectories of 700 individual cells belonging to three different species (Amoeba proteus, Metamoeba leningradensis, and Amoeba borokensis) in four different scenarios: in absence of stimuli, under an electric field (galvanotaxis), in a chemotactic gradient (chemotaxis), and under simultaneous galvanotactic and chemotactic stimuli. All movements were analyzed using advanced quantitative tools. The results show that the trajectories are mainly characterized by coherent integrative responses that operate at the global cellular scale. These systemic migratory movements depend on the cooperative nonlinear interaction of most, if not all, molecular components of cells.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia 30100, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | | | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada 18016, Spain
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | - Alberto Pérez-Samartín
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa 48940, Spain
- Biobizkaia Health Research Institute, Barakaldo 48903, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
2
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Correspondence insights into the role of genes in cell functionality. Comments on "The gene: An appraisal" by K. Baverstock. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:152-160. [PMID: 34624359 DOI: 10.1016/j.pbiomolbio.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
One of the most important goals of the post-genomic era is to understand the different sources of molecular information that regulate the functional and structural architecture of cells. In this regard, Prof. K. Baverstock underscores in his recent article "The gene: An appraisal" (Baverstock, 2021) that genes are not the leading elements in cellular functionality, inheritance and evolution. As a consequence, the theory of evolution based on the Neo-Darwinian synthesis, is inadequate for today's scientific evidence. Conversely, the author contends that life processes viewed on the basis of thermodynamics, complex system dynamics and self-organization provide a new framework for the foundations of Biology. I consider it necessary to comment on some essential aspects of this relevant work, and here I present a short overview of the main non-genetic sources of biomolecular order and complexity that underline the molecular dynamics and functionality of cells. These sources generate different processes of complexity, which encompasses from the most elementary levels of molecular activity to the emergence of systemic behaviors, and the information necessary to sustain them is not contained in the genome.
Collapse
|
4
|
Carrasco-Pujante J, Bringas C, Malaina I, Fedetz M, Martínez L, Pérez-Yarza G, Dolores Boyano M, Berdieva M, Goodkov A, López JI, Knafo S, De la Fuente IM. Associative Conditioning Is a Robust Systemic Behavior in Unicellular Organisms: An Interspecies Comparison. Front Microbiol 2021; 12:707086. [PMID: 34349748 PMCID: PMC8327096 DOI: 10.3389/fmicb.2021.707086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
The capacity to learn new efficient systemic behavior is a fundamental issue of contemporary biology. We have recently observed, in a preliminary analysis, the emergence of conditioned behavior in some individual amoebae cells. In these experiments, cells were able to acquire new migratory patterns and remember them for long periods of their cellular cycle, forgetting them later on. Here, following a similar conceptual framework of Pavlov's experiments, we have exhaustively studied the migration trajectories of more than 2000 individual cells belonging to three different species: Amoeba proteus, Metamoeba leningradensis, and Amoeba borokensis. Fundamentally, we have analyzed several relevant properties of conditioned cells, such as the intensity of the responses, the directionality persistence, the total distance traveled, the directionality ratio, the average speed, and the persistence times. We have observed that cells belonging to these three species can modify the systemic response to a specific stimulus by associative conditioning. Our main analysis shows that such new behavior is very robust and presents a similar structure of migration patterns in the three species, which was characterized by the presence of conditioning for long periods, remarkable straightness in their trajectories and strong directional persistence. Our experimental and quantitative results, compared with other studies on complex cellular responses in bacteria, protozoa, fungus-like organisms and metazoans that we discus here, allow us to conclude that cellular associative conditioning might be a widespread characteristic of unicellular organisms. This new systemic behavior could be essential to understand some key principles involved in increasing the cellular adaptive fitness to microenvironments.
Collapse
Affiliation(s)
- Jose Carrasco-Pujante
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Carlos Bringas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, CSIC, Institute of Parasitology and Biomedicine “López-Neyra”, Granada, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Basque Center of Applied Mathematics, Bilbao, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mariia Berdieva
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Science, Saint Petersburg, Russia
| | - Andrew Goodkov
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Science, Saint Petersburg, Russia
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
- Biophysics Institute, CSIC-UPV/EHU, University of the Basque Country (UPV/EHU) and Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| | - Ildefonso M. De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, Murcia, Spain
| |
Collapse
|
5
|
López JI, De la Fuente IM. An Approach to Cell Motility as a Key Mechanism in Oncology. Cancers (Basel) 2021; 13:cancers13143576. [PMID: 34298789 PMCID: PMC8303912 DOI: 10.3390/cancers13143576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- José I. López
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Correspondence: (J.I.L.); (I.M.D.l.F.)
| | - Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, 30100 Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
- Correspondence: (J.I.L.); (I.M.D.l.F.)
| |
Collapse
|
6
|
De la Fuente IM, Martínez L, Carrasco-Pujante J, Fedetz M, López JI, Malaina I. Self-Organization and Information Processing: From Basic Enzymatic Activities to Complex Adaptive Cellular Behavior. Front Genet 2021; 12:644615. [PMID: 34093645 PMCID: PMC8176287 DOI: 10.3389/fgene.2021.644615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
One of the main aims of current biology is to understand the origin of the molecular organization that underlies the complex dynamic architecture of cellular life. Here, we present an overview of the main sources of biomolecular order and complexity spanning from the most elementary levels of molecular activity to the emergence of cellular systemic behaviors. First, we have addressed the dissipative self-organization, the principal source of molecular order in the cell. Intensive studies over the last four decades have demonstrated that self-organization is central to understand enzyme activity under cellular conditions, functional coordination between enzymatic reactions, the emergence of dissipative metabolic networks (DMN), and molecular rhythms. The second fundamental source of order is molecular information processing. Studies on effective connectivity based on transfer entropy (TE) have made possible the quantification in bits of biomolecular information flows in DMN. This information processing enables efficient self-regulatory control of metabolism. As a consequence of both main sources of order, systemic functional structures emerge in the cell; in fact, quantitative analyses with DMN have revealed that the basic units of life display a global enzymatic structure that seems to be an essential characteristic of the systemic functional metabolism. This global metabolic structure has been verified experimentally in both prokaryotic and eukaryotic cells. Here, we also discuss how the study of systemic DMN, using Artificial Intelligence and advanced tools of Statistic Mechanics, has shown the emergence of Hopfield-like dynamics characterized by exhibiting associative memory. We have recently confirmed this thesis by testing associative conditioning behavior in individual amoeba cells. In these Pavlovian-like experiments, several hundreds of cells could learn new systemic migratory behaviors and remember them over long periods relative to their cell cycle, forgetting them later. Such associative process seems to correspond to an epigenetic memory. The cellular capacity of learning new adaptive systemic behaviors represents a fundamental evolutionary mechanism for cell adaptation.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Basque Center of Applied Mathematics (BCAM), Bilbao, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada, Spain
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
7
|
De la Fuente IM, López JI. Cell Motility and Cancer. Cancers (Basel) 2020; 12:E2177. [PMID: 32764365 PMCID: PMC7464129 DOI: 10.3390/cancers12082177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an essential systemic behavior, tightly regulated, of all living cells endowed with directional motility that is involved in the major developmental stages of all complex organisms such as morphogenesis, embryogenesis, organogenesis, adult tissue remodeling, wound healing, immunological cell activities, angiogenesis, tissue repair, cell differentiation, tissue regeneration as well as in a myriad of pathological conditions. However, how cells efficiently regulate their locomotion movements is still unclear. Since migration is also a crucial issue in cancer development, the goal of this narrative is to show the connection between basic findings in cell locomotion of unicellular eukaryotic organisms and the regulatory mechanisms of cell migration necessary for tumor invasion and metastases. More specifically, the review focuses on three main issues, (i) the regulation of the locomotion system in unicellular eukaryotic organisms and human cells, (ii) how the nucleus does not significantly affect the migratory trajectories of cells in two-dimension (2D) surfaces and (iii) the conditioned behavior detected in single cells as a primitive form of learning and adaptation to different contexts during cell migration. New findings in the control of cell motility both in unicellular organisms and mammalian cells open up a new framework in the understanding of the complex processes involved in systemic cellular locomotion and adaptation of a wide spectrum of diseases with high impact in the society such as cancer.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, 30100 Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|