1
|
Hüner NPA, Ivanov AG, Szyszka-Mroz B, Savitch LV, Smith DR, Kata V. Photostasis and photosynthetic adaptation to polar life. PHOTOSYNTHESIS RESEARCH 2024; 161:51-64. [PMID: 38865029 DOI: 10.1007/s11120-024-01104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Photostasis is the light-dependent maintenance of energy balance associated with cellular homeostasis in photoautotrophs. We review evidence that illustrates how photosynthetic adaptation in polar photoautrophs such as aquatic green algae, cyanobacteria, boreal conifers as well as terrestrial angiosperms exhibit an astonishing plasticity in structure and function of the photosynthetic apparatus. This plasticity contributes to the maintenance of photostasis, which is essential for the long-term survival in the seemingly inhospitable Antarctic and Arctic habitats. However, evidence indicates that polar photoautrophic species exhibit different functional solutions for the maintenance of photostasis. We suggest that this reflects, in part, the genetic diversity symbolized by inherent genetic redundancy characteristic of polar photoautotrophs which enhances their survival in a thermodynamically challenging environment.
Collapse
Affiliation(s)
- Norman P A Hüner
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Beth Szyszka-Mroz
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Leonid V Savitch
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Victoria Kata
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| |
Collapse
|
2
|
Liu M, Wang Y, Zhang H, Hao Y, Wu H, Shen H, Zhang P. Mechanisms of photoprotection in overwintering evergreen conifers: Sustained quenching of chlorophyll fluorescence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108638. [PMID: 38653096 DOI: 10.1016/j.plaphy.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Evergreen conifers growing in high-latitude regions must endure prolonged winters that are characterized by sub-zero temperatures combined with light, conditions that can cause significant photooxidative stress. Understanding overwintering mechanisms is crucial for addressing winter adversity in temperate forest ecosystems and enhancing the ability of conifers to adapt to climate change. This review synthesizes the current understanding of the photoprotective mechanisms that conifers employ to mitigate photooxidative stress, particularly non-photochemical "sustained quenching", the mechanism of which is hypothesized to be a recombination or deformation of the original mechanism employed by conifers in response to short-term low temperature and intense light stress in the past. Based on this hypothesis, scattered studies in this field are assembled and integrated into a complete mechanism of sustained quenching embedded in the adaptation process of plant physiology. It also reveals which parts of the whole system have been verified in conifers and which have only been verified in non-conifers, and proposes specific directions for future research. The functional implications of studies of non-coniferous plant species for the study of coniferous trees are also considered, as a wide range of plant responses lead to sustained quenching, even among different conifer species. In addition, the review highlights the challenges of measuring sustained quenching and discusses the application of ultrafast-time-resolved fluorescence and decay-associated spectra for the elucidation of photosynthetic principles.
Collapse
Affiliation(s)
- Mingyu Liu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yu Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Yuanqin Hao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Haibo Wu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Hailong Shen
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Peng Zhang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| |
Collapse
|
3
|
Zavafer A, Mancilla C, Jolley G, Murakami K. On the concepts and correct use of radiometric quantities for assessing the light environment and their application to plant research. Biophys Rev 2023; 15:385-400. [PMID: 37396445 PMCID: PMC10310645 DOI: 10.1007/s12551-023-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Light is one of the most important factors for photosynthetic organisms to grow. Historically, the amount of light in plant sciences has been referred to as light intensity, irradiance, photosynthetic active radiation, photon flux, photon flux density, etc. On occasion, all these terms are used interchangeably, yet they refer to different physical units and each metric offers distinct information. Even for experts in the fields of plant photobiology, the use of these terms is confusing, and there is a loose implementation of each concept. This makes the use of radiometric units even more confusing to non-experts when looking for ways to measure light, since they could easily feel overwhelmed by the specialized literature. The use of scientific concepts must be accurate, as ambiguity in the use of radiometric quantities can lead to inconsistencies in analysis, thus decreasing the comparability between experiments and to the formulation of incorrect experimental designs. In this review, we provide a simple yet comprehensive view of the use of radiometric quantities in an effort to clarify their meaning and applications. To facilitate understanding, we adopt a minimum amount of mathematical expressions and provide a historical summary of the use of radiometry (with emphasis on plant sciences), examples of uses, and a review of the available instrumentation for radiometric measurements.
Collapse
Affiliation(s)
- Alonso Zavafer
- Department of Engineering, Brock University, St. Catharines, ON Canada
| | - Cristian Mancilla
- Department of Engineering, Brock University, St. Catharines, ON Canada
| | - Gregory Jolley
- Research School of Chemistry, The Australian National University, Canberra, ACT 2600 Australia
| | - Keach Murakami
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Sapporo, Japan
| |
Collapse
|
4
|
Cheng J, Zhang K, Li J, Hou Y. Using δF IP as a potential biomarker for risk assessment of environmental pollutants in aquatic ecosystem: A case study of marine cyanobacterium Synechococcus sp. PCC7002. CHEMOSPHERE 2023; 313:137621. [PMID: 36566796 DOI: 10.1016/j.chemosphere.2022.137621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Increased hazardous substances application causes more environmental pollution and risks for human health. Microalgae are the important biological groups in marine ecosystem, and considered to be sensitive to environmental pollutants. Therefore, toxicity test on marine microalgae could provide the most efficient method for aquatic toxicity assessment, and could also be used as the early warning signals in aquatic ecosystem. In view of this, our study aimed at investigating the toxicity potential of two typical organic compounds, and screening out novel photosynthetic indicators for the risk assessment of environmental pollutants. In this study, benzyl alcohol and 2-phenylethanol were chosen as the target organic compounds, and preliminary toxicity mechanism of these organic compounds on marine cyanobacterium Synechococcus sp. PCC7002 was investigated with chlorophyll fluorescence technology. Results showed that PCC7002 could be affected by benzyl alcohol or 2-phenylethanol stress, and the toxicity effect was concentration-dependent. And external benzyl alcohol and 2-phenylethanol stress damaged the oxygen evolving complex, and suppressed electron transport at the donor and receptor sides of photosystem II (PSII), influencing the absorption, transfer, and application of light energy. Furthermore, potential biomarkers were screened by half maximal inhibitory concentration (IC50) on the basis of pearson correlation coefficient analysis, and fluorescence intensity difference between the I-step and P-step of OJIP curve (δFIP) seems to be the most sensitive indicator for external stress. This study would be of significant interest to the biomarker community, and pave the way for the practical resource for marine pollution monitoring and assessment.
Collapse
Affiliation(s)
- Jie Cheng
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, 570100, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuyong Hou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
5
|
Cun Z, Xu XZ, Zhang JY, Shuang SP, Wu HM, An TX, Chen JW. Responses of photosystem to long-term light stress in a typically shade-tolerant species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2023; 13:1095726. [PMID: 36714733 PMCID: PMC9878349 DOI: 10.3389/fpls.2022.1095726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Photosynthetic adaptive strategies vary with the growth irradiance. The potential photosynthetic adaptive strategies of shade-tolerant species Panax notoginseng (Burkill) F. H. Chen to long-term high light and low light remains unclear. Photosynthetic performance, photosynthesis-related pigments, leaves anatomical characteristics and antioxidant enzyme activities were comparatively determined in P. notoginseng grown under different light regimes. The thickness of the upper epidermis, palisade tissue, and lower epidermis were declined with increasing growth irradiance. Low-light-grown leaves were declined in transpiration rate (Tr) and stomatal conductance (Cond), but intercellular CO2 concentration (C i) and net photosynthesis rate (P n) had opposite trends. The maximum photo-oxidation P 700 + (P m) was greatly reduced in 29.8% full sunlight (FL) plants; The maximum quantum yield of photosystem II (F v/F m) in 0.2% FL plants was significantly lowest. Electron transport, thermal dissipation, and the effective quantum yield of PSI [Y(I)] and PSII [Y(II)] were declined in low-light-grown plants compared with high-light-grown P. notoginseng. The minimum value of non-regulated energy dissipation of PSII [Y(NO)] was recorded in 0.2% FL P. notoginseng. OJIP kinetic curve showed that relative variable fluorescence at J-phase (V J) and the ratio of variable fluorescent F K occupying the F J-F O amplitude (W k) were significantly increased in 0.2% FL plants. However, the increase in W k was lower than the increase in V J. In conclusion, PSI photoinhibition is the underlying sensitivity of the typically shade-tolerant species P. notoginseng to high light, and the photodamage to PSII acceptor side might cause the typically shade-tolerant plants to be unsuitable for long-term low light stress.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xiang-Zeng Xu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- Research Center for Collection and Utilization of Tropical Crop Resources, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Tong-Xin An
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Kono M, Miyata K, Matsuzawa S, Noguchi T, Oguchi R, Suzuki Y, Terashima I. Mixed population hypothesis of the active and inactive PSII complexes opens a new door for photoinhibition and fluorescence studies: an ecophysiological perspective. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:917-925. [PMID: 35821662 DOI: 10.1071/fp21355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The current hypotheses for the mechanisms of photosystem II (PSII) photodamage in vivo remain split on the primary damage site. However, most researchers have considered that PSII is inhibited by a sole mechanism and that the photoinhibited PSII consists of one population. In this perspective, we propose 'the mixed population hypothesis', in which there are four PSII populations: PSII with active/inactive Mn4 CaO5 oxygen-evolving complex respectively with functional/damaged primary quinone (QA ) reduction activity. This hypothesis provides a new insight into not only the PSII photoinhibition/photoprotection studies but also the repair process. We discuss our new data implying that the repair rate differs in the respective PSII populations.
Collapse
Affiliation(s)
- Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sae Matsuzawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takaya Noguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Riichi Oguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiro Suzuki
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka-City, Kanagawa 259-1293, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Iwasaki K, Szabó M, Tamburic B, Evenhuis C, Zavafer A, Kuzhiumparambil U, Ralph P. Investigating the impact of light quality on macromolecular composition of Chaetoceros muelleri. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:421-431. [PMID: 34635201 DOI: 10.1071/fp20337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/28/2021] [Indexed: 05/23/2023]
Abstract
Diatoms (Bacillariophyceae) are important to primary productivity of aquatic ecosystems. This algal group is also a valuable source of high value compounds that are utilised as aquaculture feed. The productivity of diatoms is strongly driven by light and CO2 availability, and macro- and micronutrient concentrations. The light dependency of biomass productivity and metabolite composition is well researched in diatoms, but information on the impact of light quality, particularly the productivity return on energy invested when using different monochromatic light sources, remains scarce. In this work, the productivity return on energy invested of improving growth rate, photosynthetic activity, and metabolite productivity of the diatom Chaetoceros muelleri under defined wavelengths (blue, red, and green) as well as while light is analysed. By adjusting the different light qualities to equal photosynthetically utilisable radiation, it was found that the growth rate and photosynthetic oxygen evolution was unchanged under white, blue, and green light, but it was lower under red light. Blue light improved the productivity return on energy invested for biomass, total protein, total lipid, total carbohydrate, and in fatty acids production, which would suggest that blue light should be used for aquaculture feed production.
Collapse
Affiliation(s)
- Kenji Iwasaki
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Milán Szabó
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia; and Institute of Plant Biology, Biological Research Centre, Hungary, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Bojan Tamburic
- Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW, Australia
| | - Christian Evenhuis
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Alonso Zavafer
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia; and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Peter Ralph
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
8
|
Nawrocki WJ, Liu X, Raber B, Hu C, de Vitry C, Bennett DIG, Croce R. Molecular origins of induction and loss of photoinhibition-related energy dissipation q I. SCIENCE ADVANCES 2021; 7:eabj0055. [PMID: 34936440 PMCID: PMC8694598 DOI: 10.1126/sciadv.abj0055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/08/2021] [Indexed: 05/02/2023]
Abstract
Photosynthesis fuels life on Earth using sunlight as energy source. However, light has a simultaneous detrimental effect on the enzyme triggering photosynthesis and producing oxygen, photosystem II (PSII). Photoinhibition, the light-dependent decrease of PSII activity, results in a major limitation to aquatic and land photosynthesis and occurs upon all environmental stress conditions. In this work, we investigated the molecular origins of photoinhibition focusing on the paradoxical energy dissipation process of unknown nature coinciding with PSII damage. Integrating spectroscopic, biochemical, and computational approaches, we demonstrate that the site of this quenching process is the PSII reaction center. We propose that the formation of quenching and the closure of PSII stem from the same event. We lastly reveal the heterogeneity of PSII upon photoinhibition using structure-function modeling of excitation energy transfer. This work unravels the functional details of the damage-induced energy dissipation at the heart of photosynthesis.
Collapse
Affiliation(s)
- Wojciech J. Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Xin Liu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Bailey Raber
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, TX, USA
| | - Chen Hu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, UMR 7141, CNRS-Sorbonne Université, 75005 Paris, France
| | - Doran I. G. Bennett
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, TX, USA
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
9
|
Zavafer A. A theoretical framework of the hybrid mechanism of photosystem II photodamage. PHOTOSYNTHESIS RESEARCH 2021; 149:107-120. [PMID: 34338941 DOI: 10.1007/s11120-021-00843-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Photodamage of photosystem II is a significant physiological process that is prevalent in the fields of photobiology, photosynthesis research and plant/algal stress. Since its discovery, numerous efforts have been devoted to determine the causes and mechanisms of action of photosystem II photodamage. There are two contrasting hypotheses to explain photodamage: (1) the excitation pressure induced by light absorption by the photosynthetic pigments and (2) direct photodamage of the Mn cluster located at the water-splitting site, which is independent of excitation pressure. While these two hypotheses seemed mutually exclusive, during the last decade, several independent works have proposed an alternative approach indicating that both hypotheses are valid. This was termed the dual hypothesis of photosystem II photodamage, and it postulates that both excess excitation and direct Mn photodamage operate at the same time, independently or in a synergic manner, depending on the type of sample, temperature, light spectrum, or other environmental stressors. In this mini-review, a brief summary of the contrasting hypotheses is presented, followed by recapitulation of key discoveries in the field of photosystem II photodamage of the last decade, and a synthesis of how these works support a full hybrid framework (operation of several mechanisms and their permutations) to explain PSII photodamage. All these are in recognition of Prof. Wah Soon Chow (the Australian National University), one of the key proposers of the dual hypothesis.
Collapse
Affiliation(s)
- Alonso Zavafer
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia.
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
10
|
Bashir F, Rehman AU, Szabó M, Vass I. Singlet oxygen damages the function of Photosystem II in isolated thylakoids and in the green alga Chlorella sorokiniana. PHOTOSYNTHESIS RESEARCH 2021; 149:93-105. [PMID: 34009505 PMCID: PMC8382655 DOI: 10.1007/s11120-021-00841-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Singlet oxygen (1O2) is an important damaging agent, which is produced during illumination by the interaction of the triplet excited state pigment molecules with molecular oxygen. In cells of photosynthetic organisms 1O2 is formed primarily in chlorophyll containing complexes, and damages pigments, lipids, proteins and other cellular constituents in their environment. A useful approach to study the physiological role of 1O2 is the utilization of external photosensitizers. In the present study, we employed a multiwell plate-based screening method in combination with chlorophyll fluorescence imaging to characterize the effect of externally produced 1O2 on the photosynthetic activity of isolated thylakoid membranes and intact Chlorella sorokiniana cells. The results show that the external 1O2 produced by the photosensitization reactions of Rose Bengal damages Photosystem II both in isolated thylakoid membranes and in intact cells in a concentration dependent manner indicating that 1O2 plays a significant role in photodamage of Photosystem II.
Collapse
Affiliation(s)
- Faiza Bashir
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ateeq Ur Rehman
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Milán Szabó
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Imre Vass
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| |
Collapse
|
11
|
Terashima I, Matsuo M, Suzuki Y, Yamori W, Kono M. Photosystem I in low light-grown leaves of Alocasia odora, a shade-tolerant plant, is resistant to fluctuating light-induced photoinhibition. PHOTOSYNTHESIS RESEARCH 2021; 149:69-82. [PMID: 33817762 DOI: 10.1007/s11120-021-00832-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 05/15/2023]
Abstract
When intact green leaves are exposed to the fluctuating light, in which high light (HL) and low light (LL) alternate, photosystem I (PSI) is readily damaged. This PSI inhibition is mostly alleviated by the addition of far-red (FR) light. Here, we grew Alocasia odora, a shade-tolerant species, at several light levels and examined their photosynthetic traits in relation to the fluctuating light-induced PSI inhibition. We found that, even in the absence of FR, PSI in LL-grown leaves was resistant to the fluctuating light. LL leaves showed higher chlorophyll (Chl) contents on leaf area basis, lower Chl a/b ratios, lower cytochrome f/P700 ratios, and lower PSII/PSI excitation ratios assessed by the 77 K fluorescence. Also, P700 in the HL phase of the fluctuating light was more oxidized. The results of the regression analyses of the PSI photoinhibition to these traits indicate that the lower electron flow rate to P700 and more excitation energy transfer to PSI protect PSI in LL-grown leaves. Both of these contribute oxidization of P700 to the efficient quencher form P700+. These features may be common in LL-grown shade-tolerant species, which are often exposed to strong sunflecks in their natural habitats.
Collapse
Affiliation(s)
- Ichiro Terashima
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsutoshi Matsuo
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshihiro Suzuki
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka-City, Kanagawa, 259-1293, Japan
| | - Wataru Yamori
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for Sustainable Agro-ecosystem Services (ISAS), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-City, Tokyo, 188-0002, Japan
| | - Masaru Kono
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Saucedo-García M, González-Córdova CD, Ponce-Pineda IG, Cano-Ramírez D, Romero-Colín FM, Arroyo-Pérez EE, King-Díaz B, Zavafer A, Gavilanes-Ruíz M. Effects of MPK3 and MPK6 kinases on the chloroplast architecture and function induced by cold acclimation in Arabidopsis. PHOTOSYNTHESIS RESEARCH 2021; 149:201-212. [PMID: 34132948 DOI: 10.1007/s11120-021-00852-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Exposure to low, non-freezing temperatures develops freezing tolerance in many plant species. Such process is called cold acclimation. Molecular changes undergone during cold acclimation are orchestrated by signalling networks including MAP kinases. Structure and function of chloroplasts are affected by low temperatures. The aim of this work was to study how the MAP kinases MPK3 and MPK6 are involved in the chloroplast performance upon a long period of cold acclimation. We used Arabidopsis thaliana wild type and mpk3 and mpk6 mutants. Adult plants were acclimated during 7 days at 4 °C and then measurements of PSII performance and chloroplast ultrastructure were carried out. Only the mpk6 acclimated plants showed a high freezing sensitivity. No differences in the PSII function were observed in the plants from the three genotypes exposed to non-acclimated or acclimated conditions. The acclimation of wild-type plants produced severe alterations in the ultrastructure of chloroplast and thylakoids, which was more accentuated in the mpk plants. However, only the mpk6 mutant was unable to internalize the damaged chloroplasts into the vacuole. These results indicate that cold acclimation induces alterations in the chloroplast architecture leading to preserve an optimal performance of PSII. MPK3 and MPK6 are necessary to regulate these morphological changes, but besides, MPK6 is needed to the vacuolization of the damaged chloroplasts, suggesting a role in the chloroplast recycling during cold acclimation. The latter could be quite relevant, since it could explain why this mutant is the only one showing an extremely low freezing tolerance.
Collapse
Affiliation(s)
- Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
| | - Carla D González-Córdova
- Dpto. de Bioquímica, Conjunto E. Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria Universitaria, Coyoacán, 04510, México City, México
| | - I Giordano Ponce-Pineda
- Dpto. de Bioquímica, Conjunto E. Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria Universitaria, Coyoacán, 04510, México City, México
| | - Dora Cano-Ramírez
- Dpto. de Bioquímica, Conjunto E. Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria Universitaria, Coyoacán, 04510, México City, México
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB3 0LJ, UK
| | - Fernanda M Romero-Colín
- Dpto. de Bioquímica, Conjunto E. Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria Universitaria, Coyoacán, 04510, México City, México
| | - Erik E Arroyo-Pérez
- Dpto. de Bioquímica, Conjunto E. Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria Universitaria, Coyoacán, 04510, México City, México
| | - Beatriz King-Díaz
- Dpto. de Bioquímica, Conjunto E. Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria Universitaria, Coyoacán, 04510, México City, México
| | - Alonso Zavafer
- Research School of Biology, the Australian National University, Canberra, ACT, 2600, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2001, Australia
| | - Marina Gavilanes-Ruíz
- Dpto. de Bioquímica, Conjunto E. Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria Universitaria, Coyoacán, 04510, México City, México.
| |
Collapse
|
13
|
Chow WS. My precarious career in photosynthesis: a roller-coaster journey into the fascinating world of chloroplast ultrastructure, composition, function and dysfunction. PHOTOSYNTHESIS RESEARCH 2021; 149:5-24. [PMID: 33543372 DOI: 10.1007/s11120-021-00818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Despite my humble beginnings in rural China, I had the good fortune of advancing my career and joining an international community of photosynthesis researchers to work on the 'light reactions' that are a fundamental process in Nature. Along with supervisors, mentors, colleagues, students and lab assistants, I worked on ionic redistributions across the photosynthetic membrane in response to illumination, photophosphorylation, forces that regulate the stacking of photosynthetic membranes, the composition of components of the photosynthetic apparatus during acclimation to the light environment, and the failure of the photosynthetic machinery to acclimate to too much light or even to cope with moderate light due to inevitable photodamage. These fascinating underlying mechanisms were investigated in vitro and in vivo. My career path, with its ups and downs, was never secure, but the reward of knowing a little more of the secret of Nature offset the job uncertainty.
Collapse
Affiliation(s)
- Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia.
| |
Collapse
|
14
|
Zavafer A, Mancilla C. Concepts of photochemical damage of Photosystem II and the role of excessive excitation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Zavafer A, Bates H, Labeeuw L, Kofler JR, Ralph PJ. Normalized chlorophyll fluorescence imaging: A method to determine irradiance and photosynthetically active radiation in phytoplankton cultures. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Zavafer A, Labeeuw L, Mancilla C. Global Trends of Usage of Chlorophyll Fluorescence and Projections for the Next Decade. PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:6293145. [PMID: 33575667 PMCID: PMC7869938 DOI: 10.34133/2020/6293145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 05/08/2023]
Abstract
Chlorophyll fluorescence is the most widely used set of techniques to probe photosynthesis and plant stress. Its great versatility has given rise to different routine methods to study plants and algae. The three main technical platforms are pulse amplitude modulation (PAM), fast rise of chlorophyll fluorescence, and fast repetition rate. Solar-induced fluorescence (SIF) has also gained interest in the last few years. Works have compared their advantages and their underlying theory, with many arguments advanced as to which method is the most accurate and useful. To date, no data has assessed the exact magnitude of popularity and influence for each methodology. In this work, we have taken the bibliometrics of the past decade for each of the four platforms, have evaluated the public scientific opinion toward each method, and possibly identified a geographical bias. We used various metrics to assess influence and popularity for the four routine platforms compared in this study and found that, overall, PAM currently has the highest values, although the more recent SIF has increased in popularity rapidly during the last decade. This indicates that PAM is currently one of the fundamental tools in chlorophyll fluorescence.
Collapse
Affiliation(s)
- Alonso Zavafer
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Leen Labeeuw
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, NSW 2007, Australia
| | | |
Collapse
|