1
|
Yuan Z, Zhang Y, He X, Wang X, Wang X, Ren S, Su J, Shen J, Li X, Xiao Z. Engineering mesenchymal stem cells for premature ovarian failure: overcoming challenges and innovating therapeutic strategies. Theranostics 2024; 14:6487-6515. [PMID: 39479455 PMCID: PMC11519806 DOI: 10.7150/thno.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Premature ovarian failure (POF) is a leading cause of infertility in women, causing significant psychological and physical distress. Current therapeutic options are limited, necessitating the exploration of new treatments. Mesenchymal stem cells (MSCs), known for their remarkable homing and regenerative properties, have emerged as a promising intervention for POF. However, their clinical efficacy has been inconsistent. This paper aims to address these challenges by examining the cellular heterogeneity within MSC populations, which is crucial for identifying and selecting specific functional subpopulations for clinical applications. Understanding this heterogeneity can enhance therapeutic efficacy and ensure treatment stability. Additionally, this review comprehensively examines the literature on the effectiveness, safety, and ethical considerations of MSCs for ovarian regeneration, with a focus on preclinical and clinical trials. We also discuss potential strategies involving genetically and tissue-engineered MSCs. By integrating insights from these studies, we propose new directions for the design of targeted MSC treatments for POF and related disorders, potentially improving outcomes, addressing safety concerns, and expanding therapeutic options while ensuring ethical compliance.
Collapse
Affiliation(s)
- Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiang Li
- Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
- Luzhou People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Duke RE, Stanich NJ, Sittadjody S, Opara EC, Berberich JA, Saul JM. A Simple Mathematical Model Demonstrates the Potential for Cell-Based Hormone Therapy to Address Dysregulation of the Hypothalamus-Pituitary-Ovary Axis in Females with Loss of Ovarian Function. Ann Biomed Eng 2024; 52:1894-1907. [PMID: 37436565 PMCID: PMC10804442 DOI: 10.1007/s10439-023-03307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Tissue-engineering and cell-based strategies provide an intriguing approach to treat complex conditions such as those of the endocrine system. We have previously developed a cell-based hormone therapy (cHT) to address hormonal insufficiency associated with the loss of ovarian function. To assess how the cHT strategy may achieve its efficacy, we developed a mathematical model to determine if known autocrine, paracrine, and endocrine effects of the native hypothalamus-pituitary-ovary (HPO) axis could explain our previously observed effects in ovariectomized rats following treatment with cHT. Our model suggests that cHT constructs participate in the complex machinery of the HPO axis. We were able to describe the in vivo behaviors of estrogen, progesterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), inhibin, and androgen with good accuracy. A sensitivity analysis indicated that some parameters impact the broader HPO system more than others, but that most changes in model parameters led to proportional changes in the system. We also conducted a predictive analysis on the effect of cHT dose on HPO axis hormones and found that, with the exception of estrogen, the other HPO hormones analyzed reach a saturation level within the physically possible number of constructs.
Collapse
Affiliation(s)
- Rachel E Duke
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA
| | | | - Sivanandane Sittadjody
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jason A Berberich
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA.
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA.
| |
Collapse
|
3
|
Blevins GM, Flanagan CL, Kallakuri SS, Meyer OM, Nimmagadda L, Hatch JD, Shea SA, Padmanabhan V, Shikanov A. Quantification of follicles in human ovarian tissue using image processing software and trained artificial intelligence†. Biol Reprod 2024; 110:1086-1099. [PMID: 38537569 PMCID: PMC11180617 DOI: 10.1093/biolre/ioae048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 06/18/2024] Open
Abstract
Cancer survival rates in prepubertal girls and young women have risen in recent decades due to increasingly efficient treatments. However, many such treatments are gonadotoxic, causing premature ovarian insufficiency, loss of fertility, and ovarian endocrine function. Implantation of donor ovarian tissue encapsulated in immune-isolating capsules is a promising method to restore physiological endocrine function without immunosuppression or risk of reintroducing cancer cells harbored by the tissue. The success of this approach is largely determined by follicle density in the implanted ovarian tissue, which is analyzed manually from histologic sections and necessitates specialized, time-consuming labor. To address this limitation, we developed a fully automated method to quantify follicle density that does not require additional coding. We first analyzed ovarian tissue from 12 human donors between 16 and 37 years old using semi-automated image processing with manual follicle annotation and then trained artificial intelligence program based on follicle identification and object classification. One operator manually analyzed 102 whole slide images from serial histologic sections. Of those, 77 images were assessed by a second manual operator, followed with an automated method utilizing artificial intelligence. Of the 1181 follicles the control operator counted, the comparison operator counted 1178, and the artificial intelligence counted 927 follicles with 80% of those being correctly identified as follicles. The three-stage artificial intelligence pipeline finished 33% faster than manual annotation. Collectively, this report supports the use of artificial intelligence and automation to select tissue donors and grafts with the greatest follicle density to ensure graft longevity for premature ovarian insufficiency treatment.
Collapse
Affiliation(s)
- Gabrielle M Blevins
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Colleen L Flanagan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sridula S Kallakuri
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Owen M Meyer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Likitha Nimmagadda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - James D Hatch
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sydney A Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Pham JPA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2024:e2400965. [PMID: 38843866 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John-Paul A Pham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - María M Coronel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Day JR, Flanagan CL, David A, Hartigan-O'Connor DJ, Garcia de Mattos Barbosa M, Martinez ML, Lee C, Barnes J, Farkash E, Zelinski M, Tarantal A, Cascalho M, Shikanov A. Encapsulated Allografts Preclude Host Sensitization and Promote Ovarian Endocrine Function in Ovariectomized Young Rhesus Monkeys and Sensitized Mice. Bioengineering (Basel) 2023; 10:bioengineering10050550. [PMID: 37237620 DOI: 10.3390/bioengineering10050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Transplantation of allogeneic donor ovarian tissue holds great potential for female cancer survivors who often experience premature ovarian insufficiency. To avoid complications associated with immune suppression and to protect transplanted ovarian allografts from immune-mediated injury, we have developed an immunoisolating hydrogel-based capsule that supports the function of ovarian allografts without triggering an immune response. Encapsulated ovarian allografts implanted in naïve ovariectomized BALB/c mice responded to the circulating gonadotropins and maintained function for 4 months, as evident by regular estrous cycles and the presence of antral follicles in the retrieved grafts. In contrast to non-encapsulated controls, repeated implantations of encapsulated mouse ovarian allografts did not sensitize naïve BALB/c mice, which was confirmed with undetectable levels of alloantibodies. Further, encapsulated allografts implanted in hosts previously sensitized by the implantation of non-encapsulated allografts restored estrous cycles similarly to our results in naïve recipients. Next, we tested the translational potential and efficiency of the immune-isolating capsule in a rhesus monkey model by implanting encapsulated ovarian auto- and allografts in young ovariectomized animals. The encapsulated ovarian grafts survived and restored basal levels of urinary estrone conjugate and pregnanediol 3-glucuronide during the 4- and 5-month observation periods. We demonstrate, for the first time, that encapsulated ovarian allografts functioned for months in young rhesus monkeys and sensitized mice, while the immunoisolating capsule prevented sensitization and protected the allograft from rejection.
Collapse
Affiliation(s)
- James R Day
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colleen L Flanagan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anu David
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dennis J Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | | | - Michele L Martinez
- California National Primate Research Center, University of California, Davis, CA 95616, USA
- Department of Pediatrics, University of California, Davis, CA 95616, USA
| | - Charles Lee
- California National Primate Research Center, University of California, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | - Jenna Barnes
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan Farkash
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alice Tarantal
- California National Primate Research Center, University of California, Davis, CA 95616, USA
- Department of Pediatrics, University of California, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Zhu Y, Kong B, Liu R, Zhao Y. Developing biomedical engineering technologies for reproductive medicine. SMART MEDICINE 2022; 1:e20220006. [PMID: 39188735 PMCID: PMC11235786 DOI: 10.1002/smmd.20220006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 08/28/2024]
Abstract
Infertility is a rising global health issue with a far-reaching impact on the socioeconomic livelihoods. As there are highly complex causes of male and female infertility, it is highly desired to promote and maintain reproductive health by the integration of advanced technologies. Biomedical engineering, a mature technology applied in the fields of biology and health care, has emerged as a powerful tool in the diagnosis and treatment of infertility. Nowadays, various promising biomedical engineering approaches are under investigation to address human infertility. Biomedical engineering approaches can not only improve our fundamental understanding of sperm and follicle development in bioengineered devices combined with microfabrication, biomaterials, and relevant cells, but also be applied to repair uterine, ovary, and cervicovaginal tissues and restore tissue function. Here, we introduce the infertility in male and female and provide a comprehensive summary of the various promising biomedical engineering technologies and their applications in reproductive medicine. Also, the challenges and prospects of biomedical engineering technologies for clinical transformation are discussed. We believe that this review will promote communications between engineers, biologists, and clinicians and potentially contribute to the clinical transformation of these innovative research works in the immediate future.
Collapse
Affiliation(s)
- Yujuan Zhu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Bin Kong
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
7
|
Vieira S, Silva-Correia J, Reis RL, Oliveira JM. Engineering Hydrogels for Modulation of Material-Cell Interactions. Macromol Biosci 2022; 22:e2200091. [PMID: 35853666 DOI: 10.1002/mabi.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/29/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels are a recurrent platform for Tissue Engineering (TE) strategies. Their versatility and the variety of available methods for tuning their properties highly contribute to hydrogels' success. As a result, the design of advanced hydrogels has been thoroughly studied, in the quest for better solutions not only for drugs- and cell-based therapies but also for more fundamental studies. The wide variety of sources, crosslinking strategies, and functionalization methods, and mostly the resemblance of hydrogels to the natural extracellular matrix, make this 3D hydrated structures an excellent tool for TE approaches. The state-of-the-art information regarding hydrogel design, processing methods, and the influence of different hydrogel formulations on the final cell-biomaterial interactions are overviewed herein. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Zhang D, Ding C, Duan T, Zhou Q. Applications of Hydrogels in Premature Ovarian Failure and Intrauterine Adhesion. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.942957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Premature ovarian failure (POF) and intrauterine adhesion (IUA) that easily lead to reduced fertility in premenopausal women are two difficult diseases to treat in obstetrics and gynecology. Hormone therapy, in vitro fertilization and surgical treatments do not completely restore fertility. The advent of hydrogels offers new hope for the treatment of POF and IUA. Hydrogels are noncytotoxic and biodegradable, and do not cause immune rejection or inflammatory reactions. Drug delivery and stem cell delivery are the main application forms. Hydrogels are a local drug delivery reservoir, and the control of drug release is achieved by changing the physicochemical properties. The porous properties and stable three-dimensional structure of hydrogels support stem cell growth and functions. In addition, hydrogels are promising biomaterials for increasing the success rate of ovarian tissue transplantation. Hydrogel-based in vitro three-dimensional culture of follicles drives the development of artificial ovaries. Hydrogels form a barrier at the site of injury and have antibacterial, antiadhesive and antistenosis properties for IUA treatment. In this review, we evaluate the physicochemical properties of hydrogels, and focus on the latest applications of hydrogels in POF and IUA. We also found the limitations on clinical application of hydrogel and provide future prospects. Artificial ovary as the future of hydrogel in POF is worth studying, and 3D bioprinting may help the mass production of hydrogels.
Collapse
|
9
|
Brunette MA, Kinnear HM, Hashim PH, Flanagan CL, Day JR, Cascalho M, Padmanabhan V, Shikanov A. Human Ovarian Follicles Xenografted in Immunoisolating Capsules Survive Long Term Implantation in Mice. Front Endocrinol (Lausanne) 2022; 13:886678. [PMID: 35721740 PMCID: PMC9205207 DOI: 10.3389/fendo.2022.886678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023] Open
Abstract
Female pediatric cancer survivors often develop Premature Ovarian Insufficiency (POI) owing to gonadotoxic effects of anticancer treatments. Here we investigate the use of a cell-based therapy consisting of human ovarian cortex encapsulated in a poly-ethylene glycol (PEG)-based hydrogel that replicates the physiological cyclic and pulsatile hormonal patterns of healthy reproductive-aged women. Human ovarian tissue from four donors was analyzed for follicle density, with averages ranging between 360 and 4414 follicles/mm3. Follicles in the encapsulated and implanted cryopreserved human ovarian tissues survived up to three months, with average follicle densities ranging between 2 and 89 follicles/mm3 at retrieval. We conclude that encapsulation of human ovarian cortex in PEG-based hydrogels did not decrease follicle survival after implantation in mice and was similar to non-encapsulated grafts. Furthermore, this approach offers the means to replace the endocrine function of the ovary tissue in patients with POI.
Collapse
Affiliation(s)
- Margaret A. Brunette
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Hadrian M. Kinnear
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Prianka H. Hashim
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
| | - Colleen L. Flanagan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - James R. Day
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Pediatrics & Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
11
|
Fan Y, Flanagan CL, Brunette MA, Jones AS, Baker BM, Silber SJ, Shikanov A. Fresh and cryopreserved ovarian tissue from deceased young donors yields viable follicles. F&S SCIENCE 2021; 2:248-258. [PMID: 35146457 DOI: 10.1016/j.xfss.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Ovarian tissue cryopreservation is one of the crucial options for fertility preservation. Transplantation of cryopreserved ovarian tissue was proven to restore ovarian endocrine function in patients with premature ovarian insufficiency. Ovaries from deceased donors potentially serve as an excellent and readily available tissue for the translational and basic research. In this study, we used ovaries obtained from 5 deceased donors aged 18-26 years, to evaluate the number and quality of ovarian follicles isolated before and after cryopreservation. DESIGN Preclinical. SETTING Academic biomedical research laboratory. PATIENTS De-identified deceased human donors. INTERVENTIONS Slow-freeze cryopreservation and thawing. MAIN OUTCOME MEASURES Follicle count, follicle density, follicle viability using immunohistochemical staining (TUNEL). RESULTS The follicle density negatively correlated with age in both cryopreserved/thawed and fresh group. A total of 2803 follicles from fresh and 1608 follicles from cryopreserved tissues were classified and analyzed using Hematoxylin and eosin staining. There was no significant difference in the percent of morphologically normal follicles between two groups. TUNEL assay indicated no higher DNA damage in the follicles and the stroma cells after cryopreservation. Morphologically normal preantral follicles were enzymatically isolated from both fresh and cryopreserved tissue with 88.51 ± 5.93% (mean ± SD) of the isolated follicles confirmed viable using LIVE/DEAD evaluation. CONCLUSIONS Our results indicate the ovarian tissue from deceased donors maintain high quality after long time extracorporeal circulation and transportation from the hospital to the laboratory. High survival rate of follicles at different developmental stages suggested tolerance to the cryopreservation process. Human ovarian tissues obtained from deceased donors is an ample source tissue and can be applied to promoting research and future clinical applications.
Collapse
Affiliation(s)
- Yuting Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA.,Infertility Center of St Louis, St Luke's Hospital, St, Louis, MO 463017, USA
| | - Colleen L Flanagan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret A Brunette
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea S Jones
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sherman J Silber
- Infertility Center of St Louis, St Luke's Hospital, St, Louis, MO 463017, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Robinson J, Shikanov A, Harley B. Special Issue on Tissue Engineering for Women's Health. Tissue Eng Part A 2021; 26:685-687. [PMID: 32697675 DOI: 10.1089/ten.tea.2020.29017.jro] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jenny Robinson
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
| | | | - Brendan Harley
- Department of Chemical and Biological Engineering, University of Illinois at Urbana-Campaign, Urbana, Illinois, USA.,Cancer Center at Illinois (CCIL), and University of Illinois at Urbana-Campaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Campaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Chen J, Todorov P, Isachenko E, Rahimi G, Mallmann P, Isachenko V. Construction and cryopreservation of an artificial ovary in cancer patients as an element of cancer therapy and a promising approach to fertility restoration. HUM FERTIL 2021; 25:651-661. [PMID: 33648431 DOI: 10.1080/14647273.2021.1885756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proportion of cancer patients that survive is increasing because of improvements in cancer therapy. However, some cancer treatments, such as chemo- and radio-therapies, can cause considerable damage to reproductive function. The issue of fertility is paramount for women of childbearing age once they are cured from cancer. For those patients with prepubertal or haematogenous cancer, the possibilities of conventional fertility treatments, such as oocyte or embryo cryopreservation and transplantation, are limited. Moreover, ovarian tissue cryopreservation as an alternative to fertility preservation has limitations, with a risk of re-implanting malignant cells in patients who have recovered from potentially fatal malignant disease. One possible way to restore fertility in these patients is to mimic artificially the function of the natural organ, the ovary, by grafting isolated follicles embedded in a biological scaffold to their native environment. Construction and cryopreservation of an artificial ovary might offer a safer alternative option to restore fertility for those who cannot benefit from traditional fertility preservation techniques. This review considers the protocols for constructing an artificial ovary, summarises advances in the field with potential clinical application, and discusses future trends for cryopreservation of these artificial constructions.
Collapse
Affiliation(s)
- Jing Chen
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Sofia, Bulgaria
| | - Evgenia Isachenko
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Gohar Rahimi
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Peter Mallmann
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Vladimir Isachenko
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| |
Collapse
|
14
|
Feng X, Xia K, Ke Q, Deng R, Zhuang J, Wan Z, Luo P, Wang F, Zang Z, Sun X, Xiang AP, Tu X, Gao Y, Deng C. Transplantation of encapsulated human Leydig-like cells: A novel option for the treatment of testosterone deficiency. Mol Cell Endocrinol 2021; 519:111039. [PMID: 32980418 DOI: 10.1016/j.mce.2020.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated that the transplantation of alginate-poly-ʟ-lysine-alginate (APA)-encapsulated rat Leydig cells (LCs) provides a promising approach for treating testosterone deficiency (TD). Nevertheless, LCs have a limited capacity to proliferate, limiting the efficacy of LC transplantation therapy. Here, we established an efficient differentiation system to obtain functional Leydig-like cells (LLCs) from human stem Leydig cells (hSLCs). Then we injected APA-encapsulated LLCs into the abdominal cavities of castrated mice without an immunosuppressor. The APA-encapsulated cells survived and partially restored testosterone production for 90 days in vivo. More importantly, the transplantation of encapsulated LLCs ameliorated the symptoms of TD, such as fat accumulation, muscle atrophy and adipocyte accumulation in bone marrow. Overall, these results suggest that the transplantation of encapsulated LLCs is a promising new method for testosterone supplementation with potential clinical applications in TD.
Collapse
Affiliation(s)
- Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Rongda Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; KingMed Center for Clinical Laboratory CO., LTD, Guangzhou, China
| | - Jintao Zhuang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi Wan
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fulin Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang'an Tu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|