1
|
Pei BB, Yang H, Gao CY, Man Y, Yang Y, Li SD. Restriction on molecular fluxionality by substitution: A case study for the 1,10-dicyanobullvalene. J Comput Chem 2024; 45:2080-2090. [PMID: 38742401 DOI: 10.1002/jcc.27379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10-dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born-Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long-time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the "14 Cs → C7v" thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un-explored properties e.g. for the equilibration dynamics of C10H10.
Collapse
Affiliation(s)
- Bin-Bin Pei
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Hongjuan Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, China
| | - Cai-Yue Gao
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Yuan Man
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, China
| | - Si-Dian Li
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
2
|
Guo W, Kong WY, Tantillo DJ. Revisiting a classic carbocation - DFT, coupled-cluster, and ab initio molecular dynamics computations on barbaralyl cation formation and rearrangements. Chem Sci 2024; 15:d4sc04829f. [PMID: 39268206 PMCID: PMC11385376 DOI: 10.1039/d4sc04829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Density functional theory computations were used to model the formation and rearrangement of the barbaralyl cation (C9H+ 9). Two highly delocalized minima were located for C9H+ 9, one of C s symmetry and the other of D 3h symmetry, with the former having lower energy. Quantum chemistry-based NMR predictions affirm that the lower energy structure is the best match with experimental spectra. Partial scrambling was found to proceed through a C 2 symmetric transition structure associated with a barrier of only 2.3 kcal mol-1. The full scrambling was found to involve a C 2v symmetric transition structure associated with a 5.0 kcal mol-1 barrier. Ab initio molecular dynamics simulations initiated from the D 3h C9H+ 9 structure revealed its connection to six minima, due to the six-fold symmetry of the potential energy surface. The effects of tunneling and boron substitution on this complex reaction network were also examined.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, Univeristy of California Davis USA
| | - Wang-Yeuk Kong
- Department of Chemistry, Univeristy of California Davis USA
| | | |
Collapse
|
3
|
Dohmen C, Paululat T, Ihmels H. Reversible Restrain and Release of the Dynamic Valence Isomerization in a Shape-shifting Bullvalene by Complex Formation. Chemistry 2024; 30:e202304311. [PMID: 38275100 DOI: 10.1002/chem.202304311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
In search for structural features that enable the control of the valence isomerization of the fluxional bullvalene, a bullvalene-bis(harmane) conjugate is identified that acts as chelating ligand in complexes with metal ions. Spectrometric titrations show that this ligand forms 1 : 1 complexes with Ag+, Cu+, Cu2+, and Zn2+. Most importantly, detailed NMR-spectroscopic analysis at different temperatures reveals that the complexation with Ag+ strongly affects the dynamic isomerization of the bullvalene unit of the ligand such that only one predominant valence isomer is formed, even at 5 °C. Detailed 1H-NMR-spectroscopic studies disclose an increased barrier (~11 kJ mol-1) of the Cope rearrangement. Furthermore, the addition of hexacyclene displaces the Ag+ from the complex, so that the valence isomerization is accelerated and an equilibrium with two predominant isomers is formed. In turn, repeated addition of Ag+ regains the complex with the restrained isomerization of the bullvalene unit. This method to control the valence isomerism by straightforward chemical stimuli may be used to simplify structural analysis at elevated temperatures, i. e. a feature not available so far with bullvalenes, and it may be employed as functional element in dynamic supramolecular assemblies.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry-Biology, and Center of Micro-and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Department of Chemistry-Biology, and Center of Micro-and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry-Biology, and Center of Micro-and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| |
Collapse
|
4
|
Laconsay CJ, Tantillo DJ. Modulating Escape Channels of Cycloheptatrienyl Rhodium Carbenes To Form Semibullvalene. J Org Chem 2023. [PMID: 37335974 DOI: 10.1021/acs.joc.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
We describe the various escape channels available to dirhodium carbene intermediates from cycloheptatrienyl diazo compounds located with density functional theory. An intramolecular cyclopropanation would, in principle, provide a new route to semibullvalenes (SBVs). A detailed exploration of the potential energy surface reveals that methylating carbon-7 suppresses a competing β-hydride migration pathway to heptafulvene products, giving SBV formation a reasonable chance. During our explorations, we additionally discovered unusual spirononatriene, spironorcaradiene, and metal-stabilized 9-barbaralyl cation structures as local minima.
Collapse
Affiliation(s)
- Croix J Laconsay
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Bismillah AN, Johnson TG, Hussein BA, Turley AT, Saha PK, Wong HC, Aguilar JA, Yufit DS, McGonigal PR. Control of dynamic sp 3-C stereochemistry. Nat Chem 2023; 15:615-624. [PMID: 36914791 PMCID: PMC10159849 DOI: 10.1038/s41557-023-01156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 02/09/2023] [Indexed: 03/16/2023]
Abstract
Stereogenic sp3-hybridized carbon centres are fundamental building blocks of chiral molecules. Unlike dynamic stereogenic motifs, such as sp3-nitrogen centres or atropisomeric biaryls, sp3-carbon centres are usually fixed, requiring intermolecular reactions to undergo configurational changes. Here we report the internal enantiomerization of fluxional carbon cages and the consequences of their adaptive configurations for the transmission of stereochemical information. The sp3-carbon stereochemistry of the rigid tricyclic cages is inverted through strain-assisted Cope rearrangements, emulating the low-barrier configurational dynamics typical for sp3-nitrogen inversion or conformational isomerism. This dynamic enantiomerization can be stopped, restarted or slowed by external reagents, while the configuration of the cage is controlled by neighbouring, fixed stereogenic centres. As part of a phosphoramidite-olefin ligand, the fluxional cage acts as a conduit to transmit stereochemical information from the ligand while also transferring its dynamic properties to chiral-at-metal coordination environments, influencing catalysis, ion pairing and ligand exchange energetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Ho Chi Wong
- Department of Chemistry, Durham University, Durham, UK
| | | | | | - Paul R McGonigal
- Department of Chemistry, Durham University, Durham, UK. .,Department of Chemistry, University of York, York, UK.
| |
Collapse
|
6
|
Shapeshifting radicals. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Half-Sandwich LaBn−/0 (n = 14–17): π Dually Aromatic Lanthanide Boride Complexes with Multicenter Fluxional Bonds. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02072-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Khojandi M, Zahedi E, Seif A, Taghvamanesh A, Karimkhani M. A Theoretical Study on the Degenerate Cope Rearrangement of Hypostrophene Using the RRKM Theory and Topological Approaches. ChemistrySelect 2021. [DOI: 10.1002/slct.202004495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mahya Khojandi
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | - Ehsan Zahedi
- Department of Chemistry Shahrood Branch Islamic Azad University Shahrood Iran
| | - Ahmad Seif
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | - Afshin Taghvamanesh
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | - Mehrnoosh Karimkhani
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| |
Collapse
|
9
|
|
10
|
Laconsay CJ, Mallick D, Shaik S. External Electric Fields Interrupt the Concerted Cope Rearrangement of Semibullvalene. J Org Chem 2020; 86:731-738. [PMID: 33280381 DOI: 10.1021/acs.joc.0c02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The topic of this paper is whether the mechanism of the degenerate Cope rearrangement of semibullvalene can be affected by the presence of electrostatic fields. Herein, we report that the shape of the energy surface, as demonstrated by an "interrupted" (stepwise) mechanism, is altered in the presence of a copper cation, Cu+. Natural bond-orbital and block-localized wave-function energy decomposition analyses suggest that orbital and electrostatic interactions play a major role in altering the shape of the energy surface. Applying additional external electric fields (EEFs) induces a significant change to the energy surface with Cu+ present but negligible effects in the absence of Cu+. These findings are consistent with recent studies that demonstrate that EEFs more readily stabilize/destabilize systems with larger, more polarizable, dipole moments.
Collapse
Affiliation(s)
- Croix J Laconsay
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry, University of California-Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Dibyendu Mallick
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
11
|
Cope rearrangements in shapeshifting molecules re-examined by means of high-level CCSDT(Q) composite ab initio methods. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|