1
|
Dhillon HK, Sharma M, Dhatt AS, Meena OP, Khosa J, Sidhu MK. Insights into cellular crosstalk regulating cytoplasmic male sterility and fertility restoration. Mol Biol Rep 2024; 51:910. [PMID: 39150575 DOI: 10.1007/s11033-024-09855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Cytoplasmic male sterility has been a popular genetic tool in development of hybrids. The molecular mechanism behind maternal sterility varies from crop to crop. An understanding of underlying mechanism can help in development of new functional CMS gene in crops which lack effective and stable CMS systems. In crops where seed or fruit is the commercial product, fertility must be recovered in F1 hybrids so that higher yield gains can be realized. This necessitates the presence of fertility restorer gene (Rf) in nucleus of male parent to overcome the effect of sterile cytoplasm. Fertility restoring genes have been identified in crops like wheat, maize, sunflower, rice, pepper, sugar beet, pigeon pea etc. But in crops like eggplant, bell pepper, barley etc. unstable fertility restorers hamper the use of Cytoplasmic genic male sterility (CGMS) system. Stability of CGMS system is influenced by environment, genetic background or interaction of these factors. This review thus aims to understand the genetic mechanisms controlling mitochondrial-nuclear interactions required to design strong and stable restorers without any pleiotropic effects in F1 hybrids.
Collapse
Affiliation(s)
- Harnoor Kaur Dhillon
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Madhu Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India.
| | - A S Dhatt
- Director of Research, Punjab Agricultural University, Ludhiana, 141004, India
| | - O P Meena
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Jiffinvir Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - M K Sidhu
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
2
|
Ranaware AS, Kunchge NS, Lele SS, Ochatt SJ. Protoplast Technology and Somatic Hybridisation in the Family Apiaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1060. [PMID: 36903923 PMCID: PMC10005591 DOI: 10.3390/plants12051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Species of the family Apiaceae occupy a major market share but are hitherto dependent on open pollinated cultivars. This results in a lack of production uniformity and reduced quality that has fostered hybrid seed production. The difficulty in flower emasculation led breeders to use biotechnology approaches including somatic hybridization. We discuss the use of protoplast technology for the development of somatic hybrids, cybrids and in-vitro breeding of commercial traits such as CMS (cytoplasmic male sterility), GMS (genetic male sterility) and EGMS (environment-sensitive genic male sterility). The molecular mechanism(s) underlying CMS and its candidate genes are also discussed. Cybridization strategies based on enucleation (Gamma rays, X-rays and UV rays) and metabolically arresting protoplasts with chemicals such as iodoacetamide or iodoacetate are reviewed. Differential fluorescence staining of fused protoplast as routinely used can be replaced by new tagging approaches using non-toxic proteins. Here, we focused on the initial plant materials and tissue sources for protoplast isolation, the various digestion enzyme mixtures tested, and on the understanding of cell wall re-generation, all of which intervene in somatic hybrids regeneration. Although there are no alternatives to somatic hybridization, various approaches also discussed are emerging, viz., robotic platforms, artificial intelligence, in recent breeding programs for trait identification and selection.
Collapse
Affiliation(s)
- Ankush S. Ranaware
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Nandkumar S. Kunchge
- Research and Development Division, Kalash Seeds Pvt. Ltd., Jalna 431203, Maharashtra, India
| | - Smita S. Lele
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Sergio J. Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
3
|
Zhang X, Chen S, Zhao Z, Ma C, Liu Y. Investigation of B-atp6-orfH79 distributing in Chinese populations of Oryza rufipogon and analysis of its chimeric structure. BMC PLANT BIOLOGY 2023; 23:81. [PMID: 36750954 PMCID: PMC9903446 DOI: 10.1186/s12870-023-04082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The cytoplasmic male sterility (CMS) of rice is caused by chimeric mitochondrial DNA (mtDNA) that is maternally inherited in the majority of multicellular organisms. Wild rice (Oryza rufipogon Griff.) has been regarded as the ancestral progenitor of Asian cultivated rice (Oryza sativa L.). To investigate the distribution of original CMS source, and explore the origin of gametophytic CMS gene, a total of 427 individuals with seventeen representative populations of O. rufipogon were collected in from Dongxiang of Jiangxi Province to Sanya of Hainan Province, China, for the PCR amplification of atp6, orfH79 and B-atp6-orfH79, respectively. RESULTS The B-atp6-orfH79 and its variants (B-atp6-GSV) were detected in five among seventeen populations (i.e. HK, GZ, PS, TL and YJ) through PCR amplification, which could be divided into three haplotypes, i.e., BH1, BH2, and BH3. The BH2 haplotype was identical to B-atp6-orfH79, while the BH1 and BH3 were the novel haplotypes of B-atp6-GSV. Combined with the high-homology sequences in GenBank, a total of eighteen haplotypes have been revealed, only with ten haplotypes in orfH79 and its variants (GSV) that belong to three species (i.e. O. rufipogon, Oryza nivara and Oryza sativa). Enough haplotypes clearly demonstrated the uniform structural characteristics of the B-atp6-orfH79 as follows: except for the conserved sequence (671 bp) composed of B-atp6 (619 bp) and the downstream followed the B-atp6 (52 bp, DS), and GSV sequence, a rich variable sequence (VS, 176 bp) lies between the DS and GSV with five insertion or deletion and more than 30 single nucleotide polymorphism. Maximum likelihood analysis showed that eighteen haplotypes formed three clades with high support rate. The hierarchical analysis of molecular variance (AMOVA) indicated the occurrence of variation among all populations (FST = 1; P < 0.001), which implied that the chimeric structure occurred independently. Three haplotypes (i.e., H1, H2 and H3) were detected by the primer of orfH79, which were identical to the GVS in B-atp6-GVS structure, respectively. All seventeen haplotypes of the orfH79, belonged to six species based on our results and the existing references. Seven existed single nucleotide polymorphism in GSV section can be translated into eleven various amino acid sequences. CONCLUSIONS Generally, this study, indicating that orfH79 was always accompanied by the B-atp6, not only provide two original CMS sources for rice breeding, but also confirm the uniform structure of B-atp-orfH79, which contribute to revealing the origin of rice gametophytic CMS genes, and the reason about frequent recombination of mitochondrial DNA.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Shuying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zixian Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yating Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- College of Tobacco, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
4
|
Zhang Y, Chen Y, Zhou Y, Zhang J, Bai H, Zheng C. Comparative Transcriptome Reveals the Genes' Adaption to Herkogamy of Lumnitzera littorea (Jack) Voigt. Front Genet 2020; 11:584817. [PMID: 33363568 PMCID: PMC7753066 DOI: 10.3389/fgene.2020.584817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Lumnitzera littorea (Jack) Voigt is among the most endangered mangrove species in China. The morphology and evolution of L. littorea flowers have received substantial attention for their crucial reproductive functions. However, little is known about the genomic regulation of flower development in L. littorea. In this study, we characterized the morphology of two kinds of L. littorea flowers and performed comparative analyses of transcriptome profiles of the two different flowers. Morphological observation showed that some flowers have a column embedded in the petals while others produce a stretched flower style during petal unfolding in flowering. By using RNA-seq, we obtained 138,857 transcripts that were assembled into 82,833 unigenes with a mean length of 1055.48 bp. 82,834 and 34,997 unigenes were assigned to 52 gene ontology (GO) functional groups and 364 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 4,267 differentially expressed genes (DEGs), including 1,794 transcription factors (TFs), were identified between two types of flowers. These TFs are mainly involved in bHLH, B3, bZIP, MYB-related, and NAC family members. We further validated that 12 MADS-box genes, including 4 MIKC-type and 8 M-type TFs, were associated with the pollinate of L. littorea by herkogamy. Our current results provide valuable information for genetic analysis of L. littorea flowering and may be useful for illuminating its adaptive evolutionary mechanisms.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Sciences and Technology, Lingnan Normal University, Zhanjiang, China.,National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yukai Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yan Zhou
- School of Life Sciences and Technology, Lingnan Normal University, Zhanjiang, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - He Bai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Chunfang Zheng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
5
|
Krüger M, Abeyawardana OAJ, Krüger C, Juříček M, Štorchová H. Differentially Expressed Genes Shared by Two Distinct Cytoplasmic Male Sterility (CMS) Types of Silene vulgaris Suggest the Importance of Oxidative Stress in Pollen Abortion. Cells 2020; 9:cells9122700. [PMID: 33339225 PMCID: PMC7766179 DOI: 10.3390/cells9122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cytoplasmic male sterility (CMS), encoded by the interacting mitochondrial and nuclear genes, causes pollen abortion or non-viability. CMS is widely used in agriculture and extensively studied in crops. Much less is known about CMS in wild species. We performed a comparative transcriptomic analysis of male sterile and fertile individuals of Silene vulgaris, a model plant for the study of gynodioecy, to reveal the genes responsible for pollen abortion in this species. We used RNA-seq datasets previously employed for the analysis of mitochondrial and plastid transcriptomes of female and hermaphrodite flower buds, making it possible to compare the transcriptomes derived from three genomes in the same RNA specimen. We assembled de novo transcriptomes for two haplotypes of S. vulgaris and identified differentially expressed genes between the females and hermaphrodites, associated with stress response or pollen development. The gene for alternative oxidase was downregulated in females. The genetic pathways controlling CMS in S. vulgaris are similar to those in crops. The high number of the differentially expressed nuclear genes contrasts with the uniformity of organellar transcriptomes across genders, which suggests these pathways are evolutionarily conserved and that selective mechanisms may shield organellar transcription against changes in the cytoplasmic transcriptome.
Collapse
Affiliation(s)
- Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Oushadee A. J. Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6-Suchdol, Czech Republic
| | - Claudia Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Correspondence: ; Tel.: +420-225-106-828
| |
Collapse
|