1
|
Jaswal R, Dubey H, Kiran K, Rawal H, Kumar G, Rajarammohan S, Deshmukh R, Sonah H, Prasad P, Bhardwaj SC, Gupta N, Sharma TR. Identification and functional characterization of the npc-2-like domain containing rust effector protein that suppresses cell death in plants. Mol Biol Rep 2024; 51:962. [PMID: 39235644 DOI: 10.1007/s11033-024-09894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
The MD-2-related lipid-recognition (ML/Md-2) domain is a lipid/sterol-binding domain that are involved in sterol transfer and innate immunity in eukaryotes. Here we report a genome-wide survey of this family, identifying 84 genes in 30 fungi including plant pathogens. All the studied species were found to have varied ML numbers, and expansion of the family was observed in Rhizophagus irregularis (RI) with 33 genes. The molecular docking studies of these proteins with cholesterol derivatives indicate lipid-binding functional conservation across the animal and fungi kingdom. The phylogenetic studies among eukaryotic ML proteins showed that Puccinia ML members are more closely associated with animal (insect) npc2 proteins than other fungal ML members. One of the candidates from leaf rust fungus Puccinia triticina, Pt5643 was PCR amplified and further characterized using various studies such as qRT-PCR, subcellular localization studies, yeast functional complementation, signal peptide validation, and expression studies. The Pt5643 exhibits the highest expression on the 5th day post-infection (dpi). The confocal microscopy of Pt5643 in onion epidermal cells and N. benthamiana shows its location in the cytoplasm and nucleus. The functional complementation studies of Pt5643 in npc2 mutant yeast showed its functional similarity to the eukaryotic/yeast npc2 gene. Furthermore, the overexpression of Pt5643 also suppressed the BAX, NEP1, and H₂O₂-induced program cell death in Nicotiana species and yeast. Altogether the present study reports the novel function of ML domain proteins in plant fungal pathogens and their possible role as effector molecules in host defense manipulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, 140306, Punjab, India
- Department of Microbiology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Himanshu Dubey
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kanti Kiran
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Hukam Rawal
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Gulshan Kumar
- Department of Entomology, University of Georgia, Tifton, GA, 30223, USA
| | | | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, 171009, Shimla, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, 171009, Shimla, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, 160014, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, 140306, Punjab, India.
| |
Collapse
|
2
|
Rozano L, Jones DAB, Hane JK, Mancera RL. Template-Based Modelling of the Structure of Fungal Effector Proteins. Mol Biotechnol 2024; 66:784-813. [PMID: 36940017 PMCID: PMC11043172 DOI: 10.1007/s12033-023-00703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
The discovery of new fungal effector proteins is necessary to enable the screening of cultivars for disease resistance. Sequence-based bioinformatics methods have been used for this purpose, but only a limited number of functional effector proteins have been successfully predicted and subsequently validated experimentally. A significant obstacle is that many fungal effector proteins discovered so far lack sequence similarity or conserved sequence motifs. The availability of experimentally determined three-dimensional (3D) structures of a number of effector proteins has recently highlighted structural similarities amongst groups of sequence-dissimilar fungal effectors, enabling the search for similar structural folds amongst effector sequence candidates. We have applied template-based modelling to predict the 3D structures of candidate effector sequences obtained from bioinformatics predictions and the PHI-BASE database. Structural matches were found not only with ToxA- and MAX-like effector candidates but also with non-fungal effector-like proteins-including plant defensins and animal venoms-suggesting the broad conservation of ancestral structural folds amongst cytotoxic peptides from a diverse range of distant species. Accurate modelling of fungal effectors were achieved using RaptorX. The utility of predicted structures of effector proteins lies in the prediction of their interactions with plant receptors through molecular docking, which will improve the understanding of effector-plant interactions.
Collapse
Affiliation(s)
- Lina Rozano
- Curtin Medical School, Curtin Health Innovation Research Institute, GPO Box U1987, Perth, WA, 6845, Australia
- Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Darcy A B Jones
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
- Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - James K Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
- Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, GPO Box U1987, Perth, WA, 6845, Australia.
- Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
3
|
Jaswal R, Rajarammohan S, Dubey H, Kiran K, Rawal H, Sonah H, Deshmukh R, Sharma TR. Intrinsically Disordered Kiwellin Protein-Like Effectors Target Plant Chloroplasts and are Extensively Present in Rust Fungi. Mol Biotechnol 2024; 66:845-864. [PMID: 37000361 DOI: 10.1007/s12033-023-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
The effector proteins produced by plant pathogens are one of the essential components of host-pathogen interaction. Despite being important, most of the effector proteins remain unexplored due to the diversity in their primary sequence generated by the high selection pressure of the host immune system. However to maintain the primary function in the infection process, these effectors may tend to maintain their native protein fold to perform the corresponding biological function. In the present study, unannotated candidate secretory effector proteins of sixteen major plant fungal pathogens were analyzed to find the conserved known protein folds using homology, ab initio, and Alpha Fold/Rosetta Fold protein dimensional (3D) structure approaches. Several unannotated candidate effector proteins were found to match various known conserved protein families potentially involved in host defense manipulation in different plant pathogens. Surprisingly a large number of plant Kiwellin proteins fold like secretory proteins (> 100) were found in studied rust fungal pathogens. Many of them were predicted as potential effector proteins. Furthermore, template independent modelling using Alpha Fold/Rosetta Fold analysis and structural comparison of these candidates also predicted them to match with plant Kiwellin proteins. We also found plant Kiwellin matching proteins outside rusts including several non-pathogenic fungi suggesting the broad function of these proteins. One of the highest confidently modeled Kiwellin matching candidates effectors, Pstr_13960 (97.8%), from the Indian P. striiformis race Yr9 was characterized using overexpression, localization, and deletion studies in Nicotiana benthamiana. The Pstr_13960 suppressed the BAX-induced cell death and localized in the chloroplast. Furthermore, the expression of the Kiwellin matching region (Pst_13960_kiwi) alone suppressed the BAX-induced cell death in N. benthamiana despite the change of location to the cytoplasm and nucleus, suggesting the novel function of the Kiwellin core fold in rust fungi. Molecular docking showed that Pstr_13960 can interact with plant Chorismate mutases (CMs) using three loops conserved in plant and rust Kiwellins. Further analysis of Pstr_13960 showed to contain Intrinsically disordered regions (IDRs) in place of the N-terminal β1/β2 region found in plant Kiwellins suggesting the evolution of rust Kiwellins-like effectors (KLEs). Overall, this study reports the presence of a Kiwellin protein-like fold containing a novel effector protein family in rust fungi depicting a classical example of the evolution of effectors at the structure level as Kiwellin effectors show very low significant similarity to plant Kiwellin at the sequence level.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | | | - Himanshu Dubey
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kanti Kiran
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Hukam Rawal
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
4
|
Zhao Y, Zheng X, Tabima JF, Zhu S, Søndreli KL, Hundley H, Bauer D, Barry K, Zhang Y, Schmutz J, Wang Y, LeBoldus JM, Xiong Q. Secreted Effector Proteins of Poplar Leaf Spot and Stem Canker Pathogen Sphaerulina musiva Manipulate Plant Immunity and Contribute to Virulence in Diverse Ways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:779-795. [PMID: 37551980 DOI: 10.1094/mpmi-07-23-0091-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Fungal effectors play critical roles in manipulating plant immune responses and promoting colonization. Sphaerulina musiva is a heterothallic ascomycete fungus that causes Septoria leaf spot and stem canker disease in poplar (Populus spp.) plantations. This disease can result in premature defoliation, branch and stem breakage, increased mortality, and plantation failure. However, little is known about the interaction between S. musiva and poplar. Previous work predicted 142 candidate secreted effector proteins in S. musiva (SmCSEPs), 19 of which were selected for further functional characterization in this study. SmCSEP3 induced plant cell death in Nicotiana benthamiana, while 8 out of 19 tested SmCSEPs suppressed cell death. The signal peptides of these eight SmCSEPs exhibited secretory activity in a yeast signal sequence trap assay. Confocal microscopy revealed that four of these eight SmCSEPs target both the cytoplasm and the nucleus, whereas four predominantly localize to discrete punctate structures. Pathogen challenge assays in N. benthamiana demonstrated that the transient expression of six SmCSEPs promoted Fusarium proliferatum infection. The expression of these six SmCSEP genes were induced during infection. SmCSEP2, SmCSEP13, and SmCSEP25 suppressed chitin-triggered reactive oxygen species burst and callose deposition in N. benthamiana. The candidate secreted effector proteins of S. musiva target multiple compartments in the plant cell and modulate different pattern-triggered immunity pathways. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.
Collapse
Affiliation(s)
- Yao Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210095, China
| | - Xinyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Javier F Tabima
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
- Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Sheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kelsey L Søndreli
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Hope Hundley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Diane Bauer
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Kerrie Barry
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Yaxin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Yuanchao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210095, China
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
- Department of Biology, Clark University, Worcester, MA 01610, U.S.A
| | - Qin Xiong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Derbyshire MC, Raffaele S. Surface frustration re-patterning underlies the structural landscape and evolvability of fungal orphan candidate effectors. Nat Commun 2023; 14:5244. [PMID: 37640704 PMCID: PMC10462633 DOI: 10.1038/s41467-023-40949-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Pathogens secrete effector proteins to subvert host physiology and cause disease. Effectors are engaged in a molecular arms race with the host resulting in conflicting evolutionary constraints to manipulate host cells without triggering immune responses. The molecular mechanisms allowing effectors to be at the same time robust and evolvable remain largely enigmatic. Here, we show that 62 conserved structure-related families encompass the majority of fungal orphan effector candidates in the Pezizomycotina subphylum. These effectors diversified through changes in patterns of thermodynamic frustration at surface residues. The underlying mutations tended to increase the robustness of the overall effector protein structure while switching potential binding interfaces. This mechanism could explain how conserved effector families maintained biological activity over long evolutionary timespans in different host environments and provides a model for the emergence of sequence-unrelated effector families with conserved structures.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France.
| |
Collapse
|
6
|
Arguelles J, Lee J, Cardenas LV, Govind S, Singh S. In Silico Analysis of a Drosophila Parasitoid Venom Peptide Reveals Prevalence of the Cation-Polar-Cation Clip Motif in Knottin Proteins. Pathogens 2023; 12:pathogens12010143. [PMID: 36678491 PMCID: PMC9865768 DOI: 10.3390/pathogens12010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
As generalist parasitoid wasps, Leptopilina heterotoma are highly successful on many species of fruit flies of the genus Drosophila. The parasitoids produce specialized multi-strategy extracellular vesicle (EV)-like structures in their venom. Proteomic analysis identified several immunity-associated proteins, including the knottin peptide, LhKNOT, containing the structurally conserved inhibitor cysteine knot (ICK) fold, which is present in proteins from diverse taxa. Our structural and docking analysis of LhKNOT's 36-residue core knottin fold revealed that in addition to the knottin motif itself, it also possesses a Cation-Polar-Cation (CPC) clip. The CPC clip motif is thought to facilitate antimicrobial activity in heparin-binding proteins. Surprisingly, a majority of ICKs tested also possess the CPC clip motif, including 75 bona fide plant and arthropod knottin proteins that share high sequence and/or structural similarity with LhKNOT. Like LhKNOT and these other 75 knottin proteins, even the Drosophila Drosomycin antifungal peptide, a canonical target gene of the fly's Toll-NF-kappa B immune pathway, contains this CPC clip motif. Together, our results suggest a possible defensive function for the parasitoid LhKNOT. The prevalence of the CPC clip motif, intrinsic to the cysteine knot within the knottin proteins examined here, suggests that the resultant 3D topology is important for their biochemical functions. The CPC clip is likely a highly conserved structural motif found in many diverse proteins with reported heparin binding capacity, including amyloid proteins. Knottins are targets for therapeutic drug development, and insights into their structure-function relationships will advance novel drug design.
Collapse
Affiliation(s)
- Joseph Arguelles
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Jenny Lee
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Lady V. Cardenas
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Shubha Govind
- Department of Biology, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
7
|
Rocafort M, Bowen JK, Hassing B, Cox MP, McGreal B, de la Rosa S, Plummer KM, Bradshaw RE, Mesarich CH. The Venturia inaequalis effector repertoire is dominated by expanded families with predicted structural similarity, but unrelated sequence, to avirulence proteins from other plant-pathogenic fungi. BMC Biol 2022; 20:246. [PMID: 36329441 PMCID: PMC9632046 DOI: 10.1186/s12915-022-01442-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.
Collapse
Affiliation(s)
- Mercedes Rocafort
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Berit Hassing
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Brogan McGreal
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Kim M Plummer
- Department of Animal, Plant and Soil Sciences, La Trobe University, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
8
|
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int J Mol Sci 2022; 23:9629. [PMID: 36077025 PMCID: PMC9456177 DOI: 10.3390/ijms23179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.
Collapse
Affiliation(s)
- Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Age Qiu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430, USA
| |
Collapse
|
9
|
Mapuranga J, Zhang N, Zhang L, Chang J, Yang W. Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Front Microbiol 2022; 13:799396. [PMID: 35722337 PMCID: PMC9201565 DOI: 10.3389/fmicb.2022.799396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
Biotrophic plant pathogenic fungi are widely distributed and are among the most damaging pathogenic organisms of agriculturally important crops responsible for significant losses in quality and yield. However, the pathogenesis of obligate parasitic pathogenic microorganisms is still under investigation because they cannot reproduce and complete their life cycle on an artificial medium. The successful lifestyle of biotrophic fungal pathogens depends on their ability to secrete effector proteins to manipulate or evade plant defense response. By integrating genomics, transcriptomics, and effectoromics, insights into how the adaptation of biotrophic plant fungal pathogens adapt to their host populations can be gained. Efficient tools to decipher the precise molecular mechanisms of rust–plant interactions, and standardized routines in genomics and functional pipelines have been established and will pave the way for comparative studies. Deciphering fungal pathogenesis not only allows us to better understand how fungal pathogens infect host plants but also provides valuable information for plant diseases control, including new strategies to prevent, delay, or inhibit fungal development. Our review provides a comprehensive overview of the efforts that have been made to decipher the effector proteins of biotrophic fungal pathogens and demonstrates how rapidly research in the field of obligate biotrophy has progressed.
Collapse
|
10
|
Ortiz D, Chen J, Outram MA, Saur IM, Upadhyaya NM, Mago R, Ericsson DJ, Cesari S, Chen C, Williams SJ, Dodds PN. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. THE NEW PHYTOLOGIST 2022; 234:592-606. [PMID: 35107838 PMCID: PMC9306850 DOI: 10.1111/nph.18011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 05/28/2023]
Abstract
Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site-directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino-acid variation involving a single substitution of the AvrSr50 surface-exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate-binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.
Collapse
Affiliation(s)
- Diana Ortiz
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- National Research Institute for AgricultureFood and Environment, Genetics and Breeding of Fruit and Vegetables UnitMontfavet84143France
| | - Jian Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Megan A. Outram
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Isabel M.L. Saur
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
- University of Plant SciencesUniversity of CologneCologne50674Germany
- Cluster of Excellence on Plant SciencesCologne50674Germany
| | - Narayana M. Upadhyaya
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Rohit Mago
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Daniel J. Ericsson
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Australian SynchrotronMacromolecular CrystallographyClaytonVic.3168Australia
| | - Stella Cesari
- PHIM Plant Health InstituteUniversité de MontpellierINRAE, CIRADInstitut AgroIRDMontpellier34980France
| | - Chunhong Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Simon J. Williams
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Peter N. Dodds
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| |
Collapse
|
11
|
Jones DAB, Moolhuijzen PM, Hane JK. Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microb Genom 2021; 7. [PMID: 34468307 PMCID: PMC8715435 DOI: 10.1099/mgen.0.000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between 'effector' molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - Paula M Moolhuijzen
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia.,Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
12
|
Figueroa M, Ortiz D, Henningsen EC. Tactics of host manipulation by intracellular effectors from plant pathogenic fungi. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102054. [PMID: 33992840 DOI: 10.1016/j.pbi.2021.102054] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Fungal pathogens can secrete hundreds of effectors, some of which are known to promote host susceptibility. This biological complexity, together with the lack of genetic tools in some fungi, presents a substantial challenge to develop a broad picture of the mechanisms these pathogens use for host manipulation. Nevertheless, recent advances in understanding individual effector functions are beginning to flesh out our view of fungal pathogenesis. This review discusses some of the latest findings that illustrate how effectors from diverse species use similar strategies to modulate plant physiology to their advantage. We also summarize recent breakthroughs in the identification of effectors from challenging systems, like obligate biotrophs, and emerging concepts such as the 'iceberg model' to explain how the activation of plant immunity can be turned off by effectors with suppressive activity.
Collapse
Affiliation(s)
- Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Diana Ortiz
- National Research Institute for Agriculture, Food and Environment, Unit of Genetics and Breeding of Fruit and Vegetables, Domaine St Maurice, CS 60094, F-84143 Montfavet, France
| | - Eva C Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
13
|
Pleiotropic effects of ActVI-ORFA as an unusual regulatory factor identified in the biosynthetic pathway of actinorhodin in Streptomyces coelicolor. Microbiol Res 2021; 250:126792. [PMID: 34082307 DOI: 10.1016/j.micres.2021.126792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Regulatory networks play critical roles in controlling the the biosynthesis of natural products in Streptomyces. ActVI-ORFA, a regulatory factor encoded by the actinorhodin biosynthetic gene cluster (act cluster), positively controls the production of actinorhodin (ACT) in Streptomyces coelicolor, although its regulatory mechanism remains obscure. This study aimed to identify the regulatory targets of ActVI-ORFA. Deletion of ActVI-ORFA caused the differential expression of hundreds of proteins, as determined by two-dimensional electrophoresis and peptide mass fingerprinting analysis. qRT-PCR analysis of some genes encoding these differentially expressed proteins, including act genes and non-act genes, confirmed that ActVI-ORFA could control their transcriptional levels. In an electrophoretic mobility shift assay with a promoter region of a target gene located in the act cluster, no binding was detected, consistent with the lack of a recognizable DNA-binding domain in ActVI-ORFA. Overall, our findings suggest that ActVI-ORFA is a pleiotropic regulatory factor that controls multiple physiological pathways, including secondary metabolite production, probably via an indirect mode.
Collapse
|
14
|
Bertazzoni S, Jones DAB, Phan HT, Tan KC, Hane JK. Chromosome-level genome assembly and manually-curated proteome of model necrotroph Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and redundancy of virulence-related functions within an accessory chromosome. BMC Genomics 2021; 22:382. [PMID: 34034667 PMCID: PMC8146201 DOI: 10.1186/s12864-021-07699-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Background The fungus Parastagonospora nodorum causes septoria nodorum blotch (SNB) of wheat (Triticum aestivum) and is a model species for necrotrophic plant pathogens. The genome assembly of reference isolate Sn15 was first reported in 2007. P. nodorum infection is promoted by its production of proteinaceous necrotrophic effectors, three of which are characterised – ToxA, Tox1 and Tox3. Results A chromosome-scale genome assembly of P. nodorum Australian reference isolate Sn15, which combined long read sequencing, optical mapping and manual curation, produced 23 chromosomes with 21 chromosomes possessing both telomeres. New transcriptome data were combined with fungal-specific gene prediction techniques and manual curation to produce a high-quality predicted gene annotation dataset, which comprises 13,869 high confidence genes, and an additional 2534 lower confidence genes retained to assist pathogenicity effector discovery. Comparison to a panel of 31 internationally-sourced isolates identified multiple hotspots within the Sn15 genome for mutation or presence-absence variation, which was used to enhance subsequent effector prediction. Effector prediction resulted in 257 candidates, of which 98 higher-ranked candidates were selected for in-depth analysis and revealed a wealth of functions related to pathogenicity. Additionally, 11 out of the 98 candidates also exhibited orthology conservation patterns that suggested lateral gene transfer with other cereal-pathogenic fungal species. Analysis of the pan-genome indicated the smallest chromosome of 0.4 Mbp length to be an accessory chromosome (AC23). AC23 was notably absent from an avirulent isolate and is predominated by mutation hotspots with an increase in non-synonymous mutations relative to other chromosomes. Surprisingly, AC23 was deficient in effector candidates, but contained several predicted genes with redundant pathogenicity-related functions. Conclusions We present an updated series of genomic resources for P. nodorum Sn15 – an important reference isolate and model necrotroph – with a comprehensive survey of its predicted pathogenicity content. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07699-8.
Collapse
Affiliation(s)
| | - Darcy A B Jones
- Centre for Crop & Disease Management, Curtin University, Perth, Australia
| | - Huyen T Phan
- Centre for Crop & Disease Management, Curtin University, Perth, Australia.
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, Curtin University, Perth, Australia.
| | - James K Hane
- Centre for Crop & Disease Management, Curtin University, Perth, Australia. .,Curtin Institute for Computation, Curtin University, Perth, Australia.
| |
Collapse
|
15
|
Kanja C, Hammond‐Kosack KE. Proteinaceous effector discovery and characterization in filamentous plant pathogens. MOLECULAR PLANT PATHOLOGY 2020; 21:1353-1376. [PMID: 32767620 PMCID: PMC7488470 DOI: 10.1111/mpp.12980] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 07/05/2020] [Indexed: 05/26/2023]
Abstract
The complicated interplay of plant-pathogen interactions occurs on multiple levels as pathogens evolve to constantly evade the immune responses of their hosts. Many economically important crops fall victim to filamentous pathogens that produce small proteins called effectors to manipulate the host and aid infection/colonization. Understanding the effector repertoires of pathogens is facilitating an increased understanding of the molecular mechanisms underlying virulence as well as guiding the development of disease control strategies. The purpose of this review is to give a chronological perspective on the evolution of the methodologies used in effector discovery from physical isolation and in silico predictions, to functional characterization of the effectors of filamentous plant pathogens and identification of their host targets.
Collapse
Affiliation(s)
- Claire Kanja
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
16
|
Jaswal R, Rajarammohan S, Dubey H, Sharma TR. Smut fungi as a stratagem to characterize rust effectors: opportunities and challenges. World J Microbiol Biotechnol 2020; 36:150. [PMID: 32924088 DOI: 10.1007/s11274-020-02927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/05/2020] [Indexed: 11/30/2022]
Abstract
The rust pathogens are one of the most complex fungi in the Basidiomycetes. The development of genomic resources for rust and other plant pathogens has opened the opportunities for functional genomics of fungal genes. Despite significant progress in the field of fungal genomics, functional characterization of the genome components has lacked, especially for the rust pathogens. Their obligate nature and lack of standard stable transformation protocol are the primary reasons for rusts to be one of the least explored genera despite its significance. In the recently sequenced rust genomes, a vast catalogue of predicted effectors and pathogenicity genes have been reported. However, most of these candidate genes remained unexplored due to the lack of suitable characterization methods. The heterologous expression of putative effectors in Nicotiana benthamiana and Arabidopsis thaliana has proved to be a rapid screening method for identifying the role of these effectors in virulence. However, no fungal system has been used for the functional validation of these candidate genes. The smuts, from the evolutionary point of view, are closely related to the rust pathogens. Moreover, they have been widely studied and hence could be a suitable model system for expressing rust fungal genes heterologously. The genetic manipulation methods for smuts are also well standardized. Complementation assays can be used for functional validation of the homologous genes present in rust and smut fungal pathogens, while the species-specific proteins can be expressed in the mutant strains of smut pathogens having reduced or no virulence for virulence analysis. We propose that smuts, especially Ustilago maydis, may prove to be a good model system to characterize rust effector proteins in the absence of methods to manipulate the rust genomes directly.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Sivasubramanian Rajarammohan
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, Punjab, 140306, India.
- Crop Science Division, Indian Council of Agricultural Research, New Delhi, 110001, India.
| |
Collapse
|
17
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|