1
|
Huang Y, Zhang H, Ding Q, Chen D, Zhang X, Weng S, Liu G. Comparison of multiple machine learning models for predicting prognosis of pancreatic ductal adenocarcinoma based on contrast-enhanced CT radiomics and clinical features. Front Oncol 2024; 14:1419297. [PMID: 39605884 PMCID: PMC11598923 DOI: 10.3389/fonc.2024.1419297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Objective The aim of this study was to evaluate the prognostic potential of combining clinical features and radiomics with multiple machine learning (ML) algorithms in pancreatic ductal adenocarcinoma (PDAC). Methods A total of 116 patients with PDAC who met the eligibility criteria were randomly assigned to a training or validation cohort. Seven ML algorithms, including Supervised Principal Components, stepwise Cox, Random Survival Forest, CoxBoost, Least absolute shrinkage and selection operation (Lasso), Ridge, and Elastic network, were integrated into 43 algorithm combinations. Forty-three radiomics models were constructed separately using radiomics features extracted from arterial phase (AP), venous phase (VP), and combined arterial and venous phase (AP+VP) images. The concordance index (C-index) of each model was calculated. The model with the highest mean C-index was identified as the best model for calculating the radiomics score (Radscore). Univariate and multivariate Cox analyses were used to identify independent prognostic indicators and create a clinical model for prognosis prediction. The multivariable Cox regression was used to combine Radscore with clinical features to create a combined model. The efficacy of the model was evaluated using the C-index, calibration curves, and decision curve analysis (DCA). Results The model based on the Lasso+StepCox[both] algorithm constructed using AP+VP radiomics features showed the best predictive ability among the 114 radiomics models. The C-indices of the model in the training and validation cohorts were 0.742 and 0.722, respectively. Based on the results of the univariate and multivariate Cox regression analyses, sex, Tumor-Node-Metastasis (TNM) stage, and systemic inflammation response index were included to build the clinical model. The combined model, incorporating three clinical factors and AP+VP-Radscore, achieved the highest C-indices of 0.764 and 0.746 in the training and validation cohorts, respectively. In terms of preoperative prognosis prediction for PDAC, the calibration curve and DCA showed that the combined model had a good consistency and greatest net benefit. Conclusion A combined model of clinical features and AP+VP-Radscore screened using multiple ML algorithms has an excellent ability to predict the prognosis of PDAC and may provide a noninvasive and effective method for clinical decision-making.
Collapse
Affiliation(s)
- Yue Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Han Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qingzhu Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Dehua Chen
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiang Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Hepatobiliary Pancreatic and Gastrointestinal Malignant Tumors Precise Treatment of Fujian, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guozhong Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Lin Y, Yang Z, Chen J, Li M, Cai Z, Wang X, Zhai T, Lin Z. A contrast-enhanced CT radiomics-based model to identify candidates for deintensified chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma patients. Eur Radiol 2024; 34:1302-1313. [PMID: 37594526 DOI: 10.1007/s00330-023-09987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVES To develop a contrast-enhanced CT (CECT) radiomics-based model to identify locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients who would benefit from deintensified chemoradiotherapy. METHODS LA-NPC patients who received low-dose concurrent cisplatin therapy (cumulative: 150 mg/m2), were randomly divided into training and validation groups. 107 radiomics features based on the primary nasopharyngeal tumor were extracted from each pre-treatment CECT scan. Through Cox regression analysis, a radiomics model and patients' corresponding radiomics scores were created with predictive independent radiomics features. T stage (T) and radiomics score (R) were compared as predictive factors. Combining the N stage (N), a clinical model (T + N), and a substitution model (R + N) were constructed. RESULTS Training and validation groups consisted of 66 and 33 patients, respectively. Three significant independent radiomics features (flatness, mean, and gray level non-uniformity in gray level dependence matrix (GLDM-GLN)) were found. The radiomics score showed better predictive ability than the T stage (concordance index (C-index): 0.67 vs. 0.61, AUC: 0.75 vs. 0.60). The R + N model had better predictive performance and more effective risk stratification than the T + N model (C-index: 0.77 vs. 0.68, AUC: 0.80 vs. 0.70). The R + N model identified a low-risk group as deintensified chemoradiotherapy candidates in which no patient developed progression within 3 years, with 5-year progression-free survival (PFS) and overall survival (OS) both 90.7% (hazard ratio (HR) = 4.132, p = 0.018). CONCLUSION Our radiomics-based model combining radiomics score and N stage can identify specific LA-NPC candidates for whom de-escalation therapy can be performed without compromising therapeutic efficacy. CLINICAL RELEVANCE STATEMENT Our study shows that the radiomics-based model (R + N) can accurately stratify patients into different risk groups, with satisfactory prognosis in the low-risk group when treated with low-dose concurrent chemotherapy, providing new options for individualized de-escalation strategies. KEY POINTS • A radiomics score, consisting of 3 predictive radiomics features (flatness, mean, and GLDM-GLN) integrated with the N stage, can identify specific LA-NPC populations for deintensified treatment. • In the selection of LA-NPC candidates for de-intensified treatment, radiomics score extracted from primary nasopharyngeal tumors based on CECT can be superior to traditional T stage classification as a predictor.
Collapse
Affiliation(s)
- Yinbing Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Shantou University Medical College, 22 Xinling Road, Shantou 515000, 515041, Guangdong, China
| | - Zhining Yang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China
| | - Jiechen Chen
- Shantou University Medical College, 22 Xinling Road, Shantou 515000, 515041, Guangdong, China
| | - Mei Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China
| | - Zeman Cai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China
| | - Xiao Wang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Shantou University Medical College, 22 Xinling Road, Shantou 515000, 515041, Guangdong, China
| | - Tiantian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China.
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China.
| | - Zhixiong Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China.
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China.
| |
Collapse
|
3
|
Pacella G, Brunese MC, D’Imperio E, Rotondo M, Scacchi A, Carbone M, Guerra G. Pancreatic Ductal Adenocarcinoma: Update of CT-Based Radiomics Applications in the Pre-Surgical Prediction of the Risk of Post-Operative Fistula, Resectability Status and Prognosis. J Clin Med 2023; 12:7380. [PMID: 38068432 PMCID: PMC10707069 DOI: 10.3390/jcm12237380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer-related deaths worldwide. Surgical resection is the main driver to improving survival in resectable tumors, while neoadjuvant treatment based on chemotherapy (and radiotherapy) is the best option-treatment for a non-primally resectable disease. CT-based imaging has a central role in detecting, staging, and managing PDAC. As several authors have proposed radiomics for risk stratification in patients undergoing surgery for PADC, in this narrative review, we have explored the actual fields of interest of radiomics tools in PDAC built on pre-surgical imaging and clinical variables, to obtain more objective and reliable predictors. METHODS The PubMed database was searched for papers published in the English language no earlier than January 2018. RESULTS We found 301 studies, and 11 satisfied our research criteria. Of those included, four were on resectability status prediction, three on preoperative pancreatic fistula (POPF) prediction, and four on survival prediction. Most of the studies were retrospective. CONCLUSIONS It is possible to conclude that many performing models have been developed to get predictive information in pre-surgical evaluation. However, all the studies were retrospective, lacking further external validation in prospective and multicentric cohorts. Furthermore, the radiomics models and the expression of results should be standardized and automatized to be applicable in clinical practice.
Collapse
Affiliation(s)
- Giulia Pacella
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| | - Maria Chiara Brunese
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| | | | - Marco Rotondo
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| | - Andrea Scacchi
- General Surgery Unit, University of Milano-Bicocca, 20126 Milan, Italy
| | - Mattia Carbone
- San Giovanni di Dio e Ruggi d’Aragona Hospital, 84131 Salerno, Italy;
| | - Germano Guerra
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| |
Collapse
|
4
|
Akkaya H, Özdemir S, Dilek O, Topaloglu AC, Bayhan AZ, Taş ZA, Gökler C, Gülek B. Evaluation of the performance of and interobserver agreement on postoperative baseline CT findings in the identification of locoregional recurrence in patients with pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 2023; 48:3135-3146. [PMID: 37517056 DOI: 10.1007/s00261-023-04012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE To evaluate interobserver agreement on the findings of baseline contrast-enhanced multidetector computed tomography (CE-MDCT) performed at the postoperative third month in patients who underwent surgery due to ductal adenocarcinoma of the pancreatic head and investigate the value of these findings in predicting locoregional recurrence. MATERIAL AND METHODS The baseline CE-MDCT images of 198 patients who underwent the Whipple procedure due to pancreatic head tumors were evaluated independently by three radiologists at the postoperative third month. The radiologists were asked to note suspicious findings in terms of locoregional recurrence, including postoperative fat stranding, the presence of perivascular contrast-enhanced solid tissue, short diameter of solid tissue if present, the shape of solid tissue (convex/concave), presence of peritoneal implants, diameter (mm) of pancreatic duct dilatation if present, the presence of lymph nodes larger than 5 mm, portal vein stenosis (≥50 and <50%), the presence of ascites, and the presence of distant metastases, as specified by the Society of Abdominal Radiology in October 2022. The agreement between the radiologists and the value of these parameters in predicting locoregional recurrence were investigated. RESULTS Among the CE-MDCT findings evaluated, the radiologists had a moderate-to-high level of agreement concerning the presence of perivascular contrast-enhanced solid tissue. However, there was a poor interobserver agreement on the shape of solid tissue. A very high level of agreement was found among the radiologists in the evaluation of pancreatic duct dilatation, peritoneal implants, ascites, and the presence of distant metastases. According to the univariate analysis, the rates of portal vein stenosis had a 1.419 -fold effect [odds ratio (OR)=1.419, [95% confidence interval (CI)= 0.548-3.679, p=0.041], lymph node presence had a 2.337 -fold effect [odds ratio (OR)=2.337, [95% confidence interval (CI)= 1.165-4.686, p=0.015], perivascular contrast-enhanced solid tissue had 2.241 -fold effect [odds ratio (OR)=2.241, [95% confidence interval (CI)= 1.072-4.684, p=0.005]. In the multivariate analysis, perivascular contrast-enhanced solid tissue had 2.241 -fold effect [odds ratio (OR)=2.519, [95% confidence interval (CI)= 1.132-5.605, p=0.024]. CONCLUSION In the postoperative baseline CE-MDCT examination, the presence of solid tissue, lymph node presence, and portal vein stenosis in the surgical bed are among the findings that may indicate early locoregional recurrence in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Hüseyin Akkaya
- Department of Radiology, Adana City Training and Research Hospital, University of Health Sciences, Kışla District, Dr. Mithat Özsan Boulevard, 4522. Street No. 1, 01230, Yüreğir, Adana, Turkey.
| | - Selim Özdemir
- Department of Radiology, Adana City Training and Research Hospital, University of Health Sciences, Kışla District, Dr. Mithat Özsan Boulevard, 4522. Street No. 1, 01230, Yüreğir, Adana, Turkey
| | - Okan Dilek
- Department of Radiology, Adana City Training and Research Hospital, University of Health Sciences, Kışla District, Dr. Mithat Özsan Boulevard, 4522. Street No. 1, 01230, Yüreğir, Adana, Turkey
| | - Ali Can Topaloglu
- Department of Radiology, Adana City Training and Research Hospital, University of Health Sciences, Kışla District, Dr. Mithat Özsan Boulevard, 4522. Street No. 1, 01230, Yüreğir, Adana, Turkey
| | - Ahmet Ziya Bayhan
- Department of Medical Oncology, Adana City Training and Research Hospital, University of Health Sciences, Kışla District, Dr. Mithat Özsan Boulevard, 4522. Street No. 1, 01230, Yüreğir, Adana, Turkey
| | - Zeynel Abidin Taş
- Department of Pathology, Adana City Training and Research Hospital, University of Health Sciences, Kışla District, Dr. Mithat Özsan Boulevard, 4522. Street No. 1, 01230, Yüreğir, Adana, Turkey
| | - Cihan Gökler
- Department of Surgical Oncology, Adana City Training and Research Hospital, University of Health Sciences, Kışla District, Dr. Mithat Özsan Boulevard, 4522. Street No. 1, 01230, Yüreğir, Adana, Turkey
| | - Bozkurt Gülek
- Department of Radiology, Adana City Training and Research Hospital, University of Health Sciences, Kışla District, Dr. Mithat Özsan Boulevard, 4522. Street No. 1, 01230, Yüreğir, Adana, Turkey
| |
Collapse
|
5
|
Xiang F, He X, Liu X, Li X, Zhang X, Fan Y, Yan S. Development and Validation of a Nomogram for Preoperative Prediction of Early Recurrence after Upfront Surgery in Pancreatic Ductal Adenocarcinoma by Integrating Deep Learning and Radiological Variables. Cancers (Basel) 2023; 15:3543. [PMID: 37509206 PMCID: PMC10377149 DOI: 10.3390/cancers15143543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Around 80% of pancreatic ductal adenocarcinoma (PDAC) patients experience recurrence after curative resection. We aimed to develop a deep-learning model based on preoperative CT images to predict early recurrence (recurrence within 12 months) in PDAC patients. The retrospective study included 435 patients with PDAC from two independent centers. A modified 3D-ResNet18 network was used for a deep learning model construction. A nomogram was constructed by incorporating deep learning model outputs and independent preoperative radiological predictors. The deep learning model provided the area under the receiver operating curve (AUC) values of 0.836, 0.736, and 0.720 in the development, internal, and external validation datasets for early recurrence prediction, respectively. Multivariate logistic analysis revealed that higher deep learning model outputs (odds ratio [OR]: 1.675; 95% CI: 1.467, 1.950; p < 0.001), cN1/2 stage (OR: 1.964; 95% CI: 1.036, 3.774; p = 0.040), and arterial involvement (OR: 2.207; 95% CI: 1.043, 4.873; p = 0.043) were independent risk factors associated with early recurrence and were used to build an integrated nomogram. The nomogram yielded AUC values of 0.855, 0.752, and 0.741 in the development, internal, and external validation datasets. In conclusion, the proposed nomogram may help predict early recurrence in PDAC patients.
Collapse
Affiliation(s)
- Fei Xiang
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiang He
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xingyu Liu
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinming Li
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuchang Zhang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yingfang Fan
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Sheng Yan
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
6
|
Li S, Su X, Ning Y, Zhang S, Shao H, Wan X, Tan Q, Yang X, Peng J, Gong Q, Yue Q. CT based intratumor and peritumoral radiomics for differentiating complete from incomplete capsular characteristics of parotid pleomorphic adenoma: a two-center study. Discov Oncol 2023; 14:76. [PMID: 37217656 DOI: 10.1007/s12672-023-00665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
OBJECTIVE Capsular characteristics of pleomorphic adenoma (PA) has various forms. Patients without complete capsule has a higher risk of recurrence than patients with complete capsule. We aimed to develop and validate CT-based intratumoral and peritumoral radiomics models to make a differential diagnosis between parotid PA with and without complete capsule. METHODS Data of 260 patients (166 patients with PA from institution 1 (training set) and 94 patients (test set) from institution 2) were retrospectively analyzed. Three Volume of interest (VOIs) were defined in the CT images of each patient: tumor volume of interest (VOItumor), VOIperitumor, and VOIintra-plus peritumor. Radiomics features were extracted from each VOI and used to train nine different machine learning algorithms. Model performance was evaluated using receiver operating characteristic (ROC) curves and the area under the curve (AUC). RESULTS The results showed that the radiomics models based on features from VOIintra-plus peritumor achieved higher AUCs compared to models based on features from VOItumor. The best performing model was Linear discriminant analysis, which achieved an AUC of 0.86 in the tenfold cross-validation and 0.869 in the test set. The model was based on 15 features, including shape-based features and texture features. CONCLUSIONS We demonstrated the feasibility of combining artificial intelligence with CT-based peritumoral radiomics features can be used to accurately predict capsular characteristics of parotid PA. This may assist in clinical decision-making by preoperative identification of capsular characteristics of parotid PA.
Collapse
Affiliation(s)
- Shuang Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Youquan Ning
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hanbing Shao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xinyue Wan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiaoyue Tan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, #37 GuoXue Xiang, Chengdu, 610041, Sichuan, China
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, #37 GuoXue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Koch V, Weitzer N, Dos Santos DP, Gruenewald LD, Mahmoudi S, Martin SS, Eichler K, Bernatz S, Gruber-Rouh T, Booz C, Hammerstingl RM, Biciusca T, Rosbach N, Gökduman A, D'Angelo T, Finkelmeier F, Yel I, Alizadeh LS, Sommer CM, Cengiz D, Vogl TJ, Albrecht MH. Multiparametric detection and outcome prediction of pancreatic cancer involving dual-energy CT, diffusion-weighted MRI, and radiomics. Cancer Imaging 2023; 23:38. [PMID: 37072856 PMCID: PMC10114410 DOI: 10.1186/s40644-023-00549-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The advent of next-generation computed tomography (CT)- and magnetic resonance imaging (MRI) opened many new perspectives in the evaluation of tumor characteristics. An increasing body of evidence suggests the incorporation of quantitative imaging biomarkers into clinical decision-making to provide mineable tissue information. The present study sought to evaluate the diagnostic and predictive value of a multiparametric approach involving radiomics texture analysis, dual-energy CT-derived iodine concentration (DECT-IC), and diffusion-weighted MRI (DWI) in participants with histologically proven pancreatic cancer. METHODS In this study, a total of 143 participants (63 years ± 13, 48 females) who underwent third-generation dual-source DECT and DWI between November 2014 and October 2022 were included. Among these, 83 received a final diagnosis of pancreatic cancer, 20 had pancreatitis, and 40 had no evidence of pancreatic pathologies. Data comparisons were performed using chi-square statistic tests, one-way ANOVA, or two-tailed Student's t-test. For the assessment of the association of texture features with overall survival, receiver operating characteristics analysis and Cox regression tests were used. RESULTS Malignant pancreatic tissue differed significantly from normal or inflamed tissue regarding radiomics features (overall P < .001, respectively) and iodine uptake (overall P < .001, respectively). The performance for the distinction of malignant from normal or inflamed pancreatic tissue ranged between an AUC of ≥ 0.995 (95% CI, 0.955-1.0; P < .001) for radiomics features, ≥ 0.852 (95% CI, 0.767-0.914; P < .001) for DECT-IC, and ≥ 0.690 (95% CI, 0.587-0.780; P = .01) for DWI, respectively. During a follow-up of 14 ± 12 months (range, 10-44 months), the multiparametric approach showed a moderate prognostic power to predict all-cause mortality (c-index = 0.778 [95% CI, 0.697-0.864], P = .01). CONCLUSIONS Our reported multiparametric approach allowed for accurate discrimination of pancreatic cancer and revealed great potential to provide independent prognostic information on all-cause mortality.
Collapse
Affiliation(s)
- Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany.
| | - Nils Weitzer
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Daniel Pinto Dos Santos
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Leon D Gruenewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Katrin Eichler
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Tatjana Gruber-Rouh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Renate M Hammerstingl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Teodora Biciusca
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Nicolas Rosbach
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Aynur Gökduman
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Fabian Finkelmeier
- Department of Internal Medicine, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Leona S Alizadeh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Christof M Sommer
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Duygu Cengiz
- Department of Radiology, University of Koc School of Medicine, Istanbul, Turkey
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| |
Collapse
|
8
|
Zheng X, Li R, Fan L, Ge Y, Li W, Feng F. Prognostic predictors of radical resection of stage I-IIIB non-small cell lung cancer: the role of preoperative CT texture features, conventional imaging features, and clinical features in a retrospectively analyzed. BMC Pulm Med 2023; 23:122. [PMID: 37060067 PMCID: PMC10105471 DOI: 10.1186/s12890-023-02422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND To investigate the value of preoperative computed tomography (CT) texture features, routine imaging features, and clinical features in the prognosis of non-small cell lung cancer (NSCLC) after radical resection. METHODS Demographic parameters and clinically features were analyzed in 107 patients with stage I-IIIB NSCLC, while 73 of these patients received CT scanning and radiomic characteristics for prognosis assessment. Texture analysis features include histogram, gray size area matrix and gray co-occurrence matrix features. The clinical risk features were identified using univariate and multivariate logistic analyses. By incorporating the radiomics score (Rad-score) and clinical risk features with multivariate cox regression, a combined nomogram was built. The nomogram performance was assessed by its calibration, clinical usefulness and Harrell's concordance index (C-index). The 5-year OS between the dichotomized subgroups was compared using Kaplan-Meier (KM) analysis and the log-rank test. RESULTS Consisting of 4 selected features, the radiomics signature showed a favorable discriminative performance for prognosis, with an AUC of 0.91 (95% CI: 0.84 ~ 0.97). The nomogram, consisting of the radiomics signature, N stage, and tumor size, showed good calibration. The nomogram also exhibited prognostic ability with a C-index of 0.91 (95% CI, 0.86-0.95) for OS. The decision curve analysis indicated that the nomogram was clinically useful. According to the KM survival curves, the low-risk group had higher 5-year survival rate compared to high-risk. CONCLUSION The as developed nomogram, combining with preoperative radiomics evidence, N stage, and tumor size, has potential to preoperatively predict the prognosis of NSCLC with a high accuracy and could assist to treatment for the NSCLC patients in the clinic.
Collapse
Affiliation(s)
- Xingxing Zheng
- Department of Radiology, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Radiology, Baoji Central Hospital, Baoji, 721000, China
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, No. 30 Tongyangbei Road, Tongzhou District, Nantong, 226361, China
| | - Rui Li
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, No. 30 Tongyangbei Road, Tongzhou District, Nantong, 226361, China
| | - Lihua Fan
- Department of Radiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, China
| | - Yaqiong Ge
- GE Healthcare China, Shanghai, 210000, China
| | - Wei Li
- Department of Radiology, Baoji Central Hospital, Baoji, 721000, China
| | - Feng Feng
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, No. 30 Tongyangbei Road, Tongzhou District, Nantong, 226361, China.
| |
Collapse
|
9
|
Ogbonnaya CN, Alsaedi BSO, Alhussaini AJ, Hislop R, Pratt N, Nabi G. Radiogenomics Reveals Correlation between Quantitative Texture Radiomic Features of Biparametric MRI and Hypoxia-Related Gene Expression in Men with Localised Prostate Cancer. J Clin Med 2023; 12:jcm12072605. [PMID: 37048688 PMCID: PMC10095552 DOI: 10.3390/jcm12072605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVES To perform multiscale correlation analysis between quantitative texture feature phenotypes of pre-biopsy biparametric MRI (bpMRI) and targeted sequence-based RNA expression for hypoxia-related genes. MATERIALS AND METHODS Images from pre-biopsy 3T bpMRI scans in clinically localised PCa patients of various risk categories (n = 15) were used to extract textural features. The genomic landscape of hypoxia-related gene expression was obtained using post-radical prostatectomy tissue for targeted RNA expression profiling using the TempO-sequence method. The nonparametric Games Howell test was used to correlate the differential expression of the important hypoxia-related genes with 28 radiomic texture features. Then, cBioportal was accessed, and a gene-specific query was executed to extract the Oncoprint genomic output graph of the selected hypoxia-related genes from The Cancer Genome Atlas (TCGA). Based on each selected gene profile, correlation analysis using Pearson's coefficients and survival analysis using Kaplan-Meier estimators were performed. RESULTS The quantitative bpMR imaging textural features, including the histogram and grey level co-occurrence matrix (GLCM), correlated with three hypoxia-related genes (ANGPTL4, VEGFA, and P4HA1) based on RNA sequencing using the TempO-Seq method. Further radiogenomic analysis, including data accessed from the cBioportal genomic database, confirmed that overexpressed hypoxia-related genes significantly correlated with a poor survival outcomes, with a median survival ratio of 81.11:133.00 months in those with and without alterations in genes, respectively. CONCLUSION This study found that there is a correlation between the radiomic texture features extracted from bpMRI in localised prostate cancer and the hypoxia-related genes that are differentially expressed. The analysis of expression data based on cBioportal revealed that these hypoxia-related genes, which were the focus of the study, are linked to an unfavourable survival outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Chidozie N Ogbonnaya
- Division of Imaging Science and Technology, University of Dundee, Dundee DD1 4HN, UK
- College of Basic Medical Sciences, Abia State University, Uturu 441103, Nigeria
| | - Basim S O Alsaedi
- Statistics Department, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Abeer J Alhussaini
- Division of Imaging Science and Technology, University of Dundee, Dundee DD1 4HN, UK
- Department of Medical Imaging, Al-Amiri Hospital, Ministry of Health, Sulaibikhat 1300, Kuwait
| | - Robert Hislop
- Cytogenetic, Human Genetics Unit, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Norman Pratt
- Cytogenetic, Human Genetics Unit, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Ghulam Nabi
- Division of Imaging Science and Technology, University of Dundee, Dundee DD1 4HN, UK
- School of Medicine, Ninewells Hospital, Dundee DD1 9SY, UK
| |
Collapse
|
10
|
Zheng Y, Wang F, Zhang W, Li Y, Yang B, Yang X, Dong T. Preoperative CT-based deep learning model for predicting overall survival in patients with high-grade serous ovarian cancer. Front Oncol 2022; 12:986089. [PMID: 36158664 PMCID: PMC9504666 DOI: 10.3389/fonc.2022.986089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose High-grade serous ovarian cancer (HGSOC) is aggressive and has a high mortality rate. A Vit-based deep learning model was developed to predicting overall survival in HGSOC patients based on preoperative CT images. Methods 734 patients with HGSOC were retrospectively studied at Qilu Hospital of Shandong University with preoperative CT images and clinical information. The whole dataset was randomly split into training cohort (n = 550) and validation cohort (n = 184). A Vit-based deep learning model was built to output an independent prognostic risk score, afterward, a nomogram was then established for predicting overall survival. Results Our Vit-based deep learning model showed promising results in predicting survival in the training cohort (AUC = 0.822) and the validation cohort (AUC = 0.823). The multivariate Cox regression analysis indicated that the image score was an independent prognostic factor in the training (HR = 9.03, 95% CI: 4.38, 18.65) and validation cohorts (HR = 9.59, 95% CI: 4.20, 21.92). Kaplan-Meier survival analysis indicates that the image score obtained from model yields promising prognostic significance to refine the risk stratification of patients with HGSOC, and the integrative nomogram achieved a C-index of 0.74 in the training cohort and 0.72 in the validation cohort. Conclusions Our model provides a non-invasive, simple, and feasible method to predicting overall survival in patients with HGSOC based on preoperative CT images, which could help predicting the survival prognostication and may facilitate clinical decision making in the era of individualized and precision medicine.
Collapse
Affiliation(s)
- Yawen Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Fang Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenxia Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yongmei Li
- Operating room, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Yang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Radiology, Qingzhou People’s Hospital, Qingzhou, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Xingsheng Yang, ; Taotao Dong,
| | - Taotao Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Xingsheng Yang, ; Taotao Dong,
| |
Collapse
|
11
|
Barat M, Marchese U, Pellat A, Dohan A, Coriat R, Hoeffel C, Fishman EK, Cassinotto C, Chu L, Soyer P. Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances. Can Assoc Radiol J 2022; 74:351-361. [PMID: 36065572 DOI: 10.1177/08465371221124927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Ugo Marchese
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Digestive, Hepatobiliary and Pancreatic Surgery, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anna Pellat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Romain Coriat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | | | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Christophe Cassinotto
- Department of Radiology, CHU Montpellier, 27037University of Montpellier, Saint-Éloi Hospital, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| |
Collapse
|
12
|
Liver metastases in pancreatic ductal adenocarcinoma: a predictive model based on CT texture analysis. Radiol Med 2022; 127:1079-1084. [PMID: 36057929 DOI: 10.1007/s11547-022-01548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
|
13
|
Update on quantitative radiomics of pancreatic tumors. Abdom Radiol (NY) 2022; 47:3118-3160. [PMID: 34292365 DOI: 10.1007/s00261-021-03216-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Radiomics is a newer approach for analyzing radiological images obtained from conventional imaging modalities such as computed tomography, magnetic resonance imaging, endoscopic ultrasonography, and positron emission tomography. Radiomics involves extracting quantitative data from the images and assessing them to identify diagnostic or prognostic features such as tumor grade, resectability, tumor response to neoadjuvant therapy, and survival. The purpose of this review is to discuss the basic principles of radiomics and provide an overview of the current clinical applications of radiomics in the field of pancreatic tumors.
Collapse
|
14
|
Laino ME, Ammirabile A, Lofino L, Mannelli L, Fiz F, Francone M, Chiti A, Saba L, Orlandi MA, Savevski V. Artificial Intelligence Applied to Pancreatic Imaging: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10081511. [PMID: 36011168 PMCID: PMC9408381 DOI: 10.3390/healthcare10081511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
The diagnosis, evaluation, and treatment planning of pancreatic pathologies usually require the combined use of different imaging modalities, mainly, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Artificial intelligence (AI) has the potential to transform the clinical practice of medical imaging and has been applied to various radiological techniques for different purposes, such as segmentation, lesion detection, characterization, risk stratification, or prediction of response to treatments. The aim of the present narrative review is to assess the available literature on the role of AI applied to pancreatic imaging. Up to now, the use of computer-aided diagnosis (CAD) and radiomics in pancreatic imaging has proven to be useful for both non-oncological and oncological purposes and represents a promising tool for personalized approaches to patients. Although great developments have occurred in recent years, it is important to address the obstacles that still need to be overcome before these technologies can be implemented into our clinical routine, mainly considering the heterogeneity among studies.
Collapse
Affiliation(s)
- Maria Elena Laino
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: (M.E.L.); (A.A.)
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: (M.E.L.); (A.A.)
| | - Ludovica Lofino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | | | - Francesco Fiz
- Nuclear Medicine Unit, Department of Diagnostic Imaging, E.O. Ospedali Galliera, 56321 Genoa, Italy
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital, 72074 Tübingen, Germany
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09124 Cagliari, Italy
| | | | - Victor Savevski
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
15
|
A systematic review of prognosis predictive role of radiomics in pancreatic cancer: heterogeneity markers or statistical tricks? Eur Radiol 2022; 32:8443-8452. [PMID: 35904618 DOI: 10.1007/s00330-022-08922-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We aimed to systematically evaluate the prognostic prediction accuracy of radiomics features extracted from pre-treatment imaging in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Radiomics literature on overall survival (OS) prediction of PDAC were all included in this systematic review. A further meta-analysis was performed on the effect size of first-order entropy. Methodological quality and risk of bias of the included studies were assessed by the radiomics quality score (RQS) and prediction model risk of bias assessment tool (PROBAST). RESULTS Twenty-three studies were finally identified in this review. Two (8.7%) studies compared prognosis prediction ability between radiomics model and TNM staging model by C-index, and both showed a better performance of the radiomics. Twenty-one (91.3%) studies reported significant predictive values of radiomics features. Nine (39.1%) studies were included in the meta-analysis, and it showed a significant correlation between first-order entropy and OS (HR 1.66, 95%CI 1.18-2.34). RQS assessment revealed validation was only performed in 5 (21.7%) studies on internal datasets and 2 (8.7%) studies on external datasets. PROBAST showed that 22 (95.7%) studies have a high risk of bias in participants because of the retrospective study design. CONCLUSION First-order entropy was significantly associated with OS and might improve the accuracy of PDAC prognosis prediction. Existing studies were poorly validated, and it should be noted in future studies. Modification of PROBAST for radiomics studies is necessary since the strict requirements of prospective study design may not be applicable to the demand for a large sample size in the model construction stage. KEY POINTS • Radiomics based on the primary lesion holds great potential for prognosis prediction. First-order entropy was significantly associated with the overall survival of PDAC and might improve the accuracy of current PDAC prognosis prediction. • We strongly recommend that at least an internal validation should be conducted in any radiomics study. Attention should be paid to the complex relationships between radiomics features. • Due to the close relationship between radiomics and big data, the strict requirement of prospective study design in PROABST may not be appropriate for radiomics studies. A balance between study types and sample sizes for radiomics studies needs to be found in the model construction stage.
Collapse
|
16
|
Gao JF, Pan Y, Lin XC, Lu FC, Qiu DS, Liu JJ, Huang HG. Prognostic value of preoperative enhanced computed tomography as a quantitative imaging biomarker in pancreatic cancer. World J Gastroenterol 2022; 28:2468-2481. [PMID: 35979266 PMCID: PMC9258279 DOI: 10.3748/wjg.v28.i22.2468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/31/2021] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with high mortality and short survival time. Computed tomography (CT) plays an important role in the diagnosis, staging and treatment of pancreatic tumour. Pancreatic cancer generally shows a low enhancement pattern compared with normal pancreatic tissue.
AIM To analyse whether preoperative enhanced CT could be used to predict postoperative overall survival in patients with PDAC.
METHODS Sixty-seven patients with PDAC undergoing pancreatic resection were enrolled retrospectively. All patients underwent preoperative unenhanced and enhanced CT examination, the CT values of which were measured. The ratio of the preoperative CT value increase from the nonenhancement phase to the portal venous phase between pancreatic tumour and normal pancreatic tissue was calculated. The cut-off value of ratios was obtained by the receiver operating characteristic (ROC) curve of the tumour relative enhancement ratio (TRER), according to which patients were divided into low- and high-enhancement groups. Univariate and multivariate analyses were performed using Cox regression based on TRER grouping. Finally, the correlation between TRER and clinicopathological characteristics was analysed.
RESULTS The area under the curve of the ROC curve was 0.768 (P < 0.05), and the cut-off value of the ROC curve was calculated as 0.7. TRER ≤ 0.7 was defined as the low-enhancement group, and TRER > 0.7 was defined as the high-enhancement group. According to the TRER grouping, the Kaplan-Meier survival curve analysis results showed that the median survival (10.0 mo) with TRER ≤ 0.7 was significantly shorter than that (22.0 mo) with TRER > 0.7 (P < 0.05). In the univariate and multivariate analyses, the prognosis of patients with TRER ≤ 0.7 was significantly worse than that of patients with TRER > 0.7 (P < 0.05). Our results demonstrated that patients in the low TRER group were more likely to have higher American Joint Committee on Cancer stage, tumour stage and lymph node stage (all P < 0.05), and TRER was significantly negatively correlated with tumour size (P < 0.05).
CONCLUSION TRER ≤ 0.7 in patients with PDAC may represent a tumour with higher clinical stage and result in a shorter overall survival.
Collapse
Affiliation(s)
- Jian-Feng Gao
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Xian-Chao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Feng-Chun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Ding-Shen Qiu
- Department of Radiology, The Hospital of Changle, Fuzhou 350200, Fujian Province, China
| | - Jun-Jun Liu
- Department of Radiology, The Hospital of Changle, Fuzhou 350200, Fujian Province, China
| | - He-Guang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
17
|
Ge X, Wang L, Pan L, Ye H, Zhu X, Feng Q, Ding Z. Risk Factors for Unilateral Trigeminal Neuralgia Based on Machine Learning. Front Neurol 2022; 13:862973. [PMID: 35463121 PMCID: PMC9024101 DOI: 10.3389/fneur.2022.862973] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023] Open
Abstract
Purpose Neurovascular compression (NVC) is considered as the main factor leading to the classical trigeminal neuralgia (CTN), and a part of idiopathic TN (ITN) may be caused by NVC (ITN-nvc). This study aimed to explore the risk factors for unilateral CTN or ITN-nvc (UC-ITN), which have bilateral NVC, using machine learning (ML). Methods A total of 89 patients with UC-ITN were recruited prospectively. According to whether there was NVC on the unaffected side, patients with UC-ITN were divided into two groups. All patients underwent a magnetic resonance imaging (MRI) scan. The bilateral cisternal segment of the trigeminal nerve was manually delineated, which avoided the offending vessel (Ofv), and the features were extracted. Dimensionality reduction, feature selection, model construction, and model evaluation were performed step-by-step. Results Four textural features with greater weight were selected in patients with UC-ITN without NVC on the unaffected side. For UC-ITN patients with NVC on the unaffected side, six textural features with greater weight were selected. The textural features (rad_score) showed significant differences between the affected and unaffected sides (p < 0.05). The nomogram model had optimal diagnostic power, and the area under the curve (AUC) in the training and validation cohorts was 0.76 and 0.77, respectively. The Ofv and rad_score were the risk factors for UC-ITN according to nomogram. Conclusion Besides NVC, the texture features of trigeminal-nerve cisternal segment and Ofv were also the risk factors for UC-ITN. These findings provided a basis for further exploration of the microscopic etiology of UC-ITN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhongxiang Ding orcid.org/0000-0001-7691-5571
| |
Collapse
|
18
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
19
|
Ren S, Tang HJ, Zhao R, Duan SF, Chen R, Wang ZQ. Application of Unenhanced Computed Tomography Texture Analysis to Differentiate Pancreatic Adenosquamous Carcinoma from Pancreatic Ductal Adenocarcinoma. Curr Med Sci 2022; 42:217-225. [PMID: 35089491 DOI: 10.1007/s11596-022-2535-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the application of unenhanced computed tomography (CT) texture analysis in differentiating pancreatic adenosquamous carcinoma (PASC) from pancreatic ductal adenocarcinoma (PDAC). METHODS Preoperative CT images of 112 patients (31 with PASC, 81 with PDAC) were retrospectively reviewed. A total of 396 texture parameters were extracted from AnalysisKit software for further texture analysis. Texture features were selected for the differentiation of PASC and PDAC by the Mann-Whitney U test, univariate logistic regression analysis, and the minimum redundancy maximum relevance algorithm. Furthermore, receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of the texture feature-based model by the random forest (RF) method. Finally, the robustness and reproducibility of the predictive model were assessed by the 10-times leave-group-out cross-validation (LGOCV) method. RESULTS In the present study, 10 texture features to differentiate PASC from PDAC were eventually retained for RF model construction after feature selection. The predictive model had a good classification performance in differentiating PASC from PDAC, with the following characteristics: sensitivity, 95.7%; specificity, 92.5%; accuracy, 94.3%; positive predictive value (PPV), 94.3%; negative predictive value (NPV), 94.3%; and area under the ROC curve (AUC), 0.98. Moreover, the predictive model was proved to be robust and reproducible using the 10-times LGOCV algorithm (sensitivity, 90.0%; specificity, 71.3%; accuracy, 76.8%; PPV, 59.0%; NPV, 95.2%; and AUC, 0.80). CONCLUSION The unenhanced CT texture analysis has great potential for differentiating PASC from PDAC.
Collapse
Affiliation(s)
- Shuai Ren
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| | - Hui-Juan Tang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, 60126, Italy
| | - Rui Zhao
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | | | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Zhong-Qiu Wang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
20
|
Cardobi N, De Robertis R, D’Onofrio M. Advanced Imaging of Pancreatic Neoplasms. IMAGING AND PATHOLOGY OF PANCREATIC NEOPLASMS 2022:481-493. [DOI: 10.1007/978-3-031-09831-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Chen X, Fu R, Shao Q, Chen Y, Ye Q, Li S, He X, Zhu J. Application of artificial intelligence to pancreatic adenocarcinoma. Front Oncol 2022; 12:960056. [PMID: 35936738 PMCID: PMC9353734 DOI: 10.3389/fonc.2022.960056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer (PC) is one of the deadliest cancers worldwide although substantial advancement has been made in its comprehensive treatment. The development of artificial intelligence (AI) technology has allowed its clinical applications to expand remarkably in recent years. Diverse methods and algorithms are employed by AI to extrapolate new data from clinical records to aid in the treatment of PC. In this review, we will summarize AI's use in several aspects of PC diagnosis and therapy, as well as its limits and potential future research avenues. METHODS We examine the most recent research on the use of AI in PC. The articles are categorized and examined according to the medical task of their algorithm. Two search engines, PubMed and Google Scholar, were used to screen the articles. RESULTS Overall, 66 papers published in 2001 and after were selected. Of the four medical tasks (risk assessment, diagnosis, treatment, and prognosis prediction), diagnosis was the most frequently researched, and retrospective single-center studies were the most prevalent. We found that the different medical tasks and algorithms included in the reviewed studies caused the performance of their models to vary greatly. Deep learning algorithms, on the other hand, produced excellent results in all of the subdivisions studied. CONCLUSIONS AI is a promising tool for helping PC patients and may contribute to improved patient outcomes. The integration of humans and AI in clinical medicine is still in its infancy and requires the in-depth cooperation of multidisciplinary personnel.
Collapse
Affiliation(s)
- Xi Chen
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Ruibiao Fu
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Shao
- Department of Surgical Ward 1, Ningbo Women and Children’s Hospital, Ningbo, China
| | - Yan Chen
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Qinghuang Ye
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Li
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiongxiong He
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Zhu
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jinhui Zhu,
| |
Collapse
|
22
|
Healy GM, Salinas-Miranda E, Jain R, Dong X, Deniffel D, Borgida A, Hosni A, Ryan DT, Njeze N, McGuire A, Conlon KC, Dodd JD, Ryan ER, Grant RC, Gallinger S, Haider MA. Pre-operative radiomics model for prognostication in resectable pancreatic adenocarcinoma with external validation. Eur Radiol 2021; 32:2492-2505. [PMID: 34757450 DOI: 10.1007/s00330-021-08314-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES In resectable pancreatic ductal adenocarcinoma (PDAC), few pre-operative prognostic biomarkers are available. Radiomics has demonstrated potential but lacks external validation. We aimed to develop and externally validate a pre-operative clinical-radiomic prognostic model. METHODS Retrospective international, multi-center study in resectable PDAC. The training cohort included 352 patients (pre-operative CTs from five Canadian hospitals). Cox models incorporated (a) pre-operative clinical variables (clinical), (b) clinical plus CT-radiomics, and (c) post-operative TNM model, which served as the reference. Outcomes were overall (OS)/disease-free survival (DFS). Models were assessed in the validation cohort from Ireland (n = 215, CTs from 34 hospitals), using C-statistic, calibration, and decision curve analyses. RESULTS The radiomic signature was predictive of OS/DFS in the validation cohort, with adjusted hazard ratios (HR) 2.87 (95% CI: 1.40-5.87, p < 0.001)/5.28 (95% CI 2.35-11.86, p < 0.001), respectively, along with age 1.02 (1.01-1.04, p = 0.01)/1.02 (1.00-1.04, p = 0.03). In the validation cohort, median OS was 22.9/37 months (p = 0.0092) and DFS 14.2/29.8 (p = 0.0023) for high-/low-risk groups and calibration was moderate (mean absolute errors 7%/13% for OS at 3/5 years). The clinical-radiomic model discrimination (C = 0.545, 95%: 0.543-0.546) was higher than the clinical model alone (C = 0.497, 95% CI 0.496-0.499, p < 0.001) or TNM (C = 0.525, 95% CI: 0.524-0.526, p < 0.001). Despite superior net benefit compared to the clinical model, the clinical-radiomic model was not clinically useful for most threshold probabilities. CONCLUSION A multi-institutional pre-operative clinical-radiomic model for resectable PDAC prognostication demonstrated superior net benefit compared to a clinical model but limited clinical utility at external validation. This reflects inherent limitations of radiomics for PDAC prognostication, when deployed in real-world settings. KEY POINTS • At external validation, a pre-operative clinical-radiomics prognostic model for pancreatic ductal adenocarcinoma (PDAC) outperformed pre-operative clinical variables alone or pathological TNM staging. • Discrimination and clinical utility of the clinical-radiomic model for treatment decisions remained low, likely due to heterogeneity of CT acquisition parameters. • Despite small improvements, prognosis in PDAC using state-of-the-art radiomics methodology remains challenging, mostly owing to its low discriminative ability. Future research should focus on standardization of CT protocols and acquisition parameters.
Collapse
Affiliation(s)
- Gerard M Healy
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | | | - Rahi Jain
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xin Dong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Dominik Deniffel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Ayelet Borgida
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - David T Ryan
- Department of Radiology, St Vincent's University Hospital, Dublin, Ireland
| | - Nwabundo Njeze
- National Surgical Centre for Pancreatic Cancer, St. Vincent's University Hospital, Dublin, Ireland
| | - Anne McGuire
- National Surgical Centre for Pancreatic Cancer, St. Vincent's University Hospital, Dublin, Ireland
| | - Kevin C Conlon
- National Surgical Centre for Pancreatic Cancer, St. Vincent's University Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jonathan D Dodd
- Department of Radiology, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Edmund Ronan Ryan
- Department of Radiology, St Vincent's University Hospital, Dublin, Ireland
- National Surgical Centre for Pancreatic Cancer, St. Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Robert C Grant
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Surgical Oncology Program, Hepatobiliary Pancreatic, University Health Network, Toronto, ON, Canada
| | - Masoom A Haider
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, University of Toronto, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
23
|
Ma YQ, Wen Y, Liang H, Zhong JG, Pang PP. Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer. World J Gastroenterol 2021; 27:6465-6475. [PMID: 34720535 PMCID: PMC8517787 DOI: 10.3748/wjg.v27.i38.6465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Synchronous liver metastasis (SLM) is an indicator of poor prognosis for colorectal cancer (CRC). Nearly 50% of CRC patients develop hepatic metastasis, with 15%-25% of them presenting with SLM. The evaluation of SLM in CRC is crucial for precise and personalized treatment. It is beneficial to detect its response to chemotherapy and choose an optimal treatment method.
AIM To construct prediction models based on magnetic resonance imaging (MRI)-radiomics and clinical parameters to evaluate the chemotherapy response in SLM of CRC.
METHODS A total of 102 CRC patients with 223 SLM lesions were identified and divided into disease response (DR) and disease non-response (non-DR) to chemotherapy. After standardizing the MRI images, the volume of interest was delineated and radiomics features were calculated. The MRI-radiomics logistic model was constructed after methods of variance/Mann-Whitney U test, correlation analysis, and least absolute shrinkage and selection operator in feature selecting. The radiomics score was calculated. The receiver operating characteristics curves by the DeLong test were analyzed with MedCalc software to compare the validity of all models. Additionally, the area under curves (AUCs) of DWI, T2WI, and portal phase of contrast-enhanced sequences radiomics model (Ra-DWI, Ra-T2WI, and Ra-portal phase of contrast-enhanced sequences) were calculated. The radiomics-clinical nomogram was generated by combining radiomics features and clinical characteristics of CA19-9 and clinical N staging.
RESULTS The AUCs of the MRI-radiomics model were 0.733 and 0.753 for the training (156 lesions with 68 non-DR and 88 DR) and the validation (67 lesions with 29 non-DR and 38 DR) set, respectively. Additionally, the AUCs of the training and the validation set of Ra-DWI were higher than those of Ra-T2WI and Ra-portal phase of contrast-enhanced sequences (training set: 0.652 vs 0.628 and 0.633, validation set: 0.661 vs 0.575 and 0.543). After chemotherapy, the top four of twelve delta-radiomics features of Ra-DWI in the DR group belonged to gray-level run-length matrices radiomics parameters. The radiomics-clinical nomogram containing radiomics score, CA19-9, and clinical N staging was built. This radiomics-clinical nomogram can effectively discriminate the patients with DR from non-DR with a higher AUC of 0.809 (95% confidence interval: 0.751-0.858).
CONCLUSION MRI-radiomics is conducive to predict chemotherapeutic response in SLM patients of CRC. The radiomics-clinical nomogram, involving radiomics score, CA19-9, and clinical N staging is more effective in predicting chemotherapeutic response.
Collapse
Affiliation(s)
- Yan-Qing Ma
- Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Yang Wen
- Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Hong Liang
- Department of Radiology, Hangzhou Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Jian-Guo Zhong
- Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang Province, China
| | - Pei-Pei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
24
|
Ghalati MK, Nunes A, Ferreira H, Serranho P, Bernardes R. Texture Analysis and its Applications in Biomedical Imaging: A Survey. IEEE Rev Biomed Eng 2021; 15:222-246. [PMID: 34570709 DOI: 10.1109/rbme.2021.3115703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Texture analysis describes a variety of image analysis techniques that quantify the variation in intensity and pattern. This paper provides an overview of several texture analysis approaches addressing the rationale supporting them, their advantages, drawbacks, and applications. This surveys emphasis is in collecting and categorising over five decades of active research on texture analysis. Brief descriptions of different approaches are presented along with application examples. From a broad range of texture analysis applications, this surveys final focus is on biomedical image analysis. An up-to-date list of biological tissues and organs in which disorders produce texture changes that may be used to spot disease onset and progression is provided. Finally, the role of texture analysis methods as biomarkers of disease is summarised.
Collapse
|
25
|
CT Radiomics-Based Preoperative Survival Prediction in Patients With Pancreatic Ductal Adenocarcinoma. AJR Am J Roentgenol 2021; 217:1104-1112. [PMID: 34467768 DOI: 10.2214/ajr.20.23490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE. Pancreatic ductal adenocarcinoma (PDAC) is often a lethal malignancy with limited preoperative predictors of long-term survival. The purpose of this study was to evaluate the prognostic utility of preoperative CT radiomics features in predicting postoperative survival of patients with PDAC. MATERIALS AND METHODS. A total of 153 patients with surgically resected PDAC who underwent preoperative CT between 2011 and 2017 were retrospectively identified. Demographic, clinical, and survival information was collected from the medical records. Survival time after the surgical resection was used to stratify patients into a low-risk group (survival time > 3 years) and a high-risk group (survival time < 1 year). The 3D volume of the whole pancreatic tumor and background pancreas were manually segmented. A total of 478 radiomics features were extracted from tumors and 11 extra features were computed from pancreas boundaries. The 10 most relevant features were selected by feature reduction. Survival analysis was performed on the basis of clinical parameters both with and without the addition of the selected features. Survival status and time were estimated by a random survival forest algorithm. Concordance index (C-index) was used to evaluate performance of the survival prediction model. RESULTS. The mean age of patients with PDAC was 67 ± 11 (SD) years. The mean tumor size was 3.31 ± 2.55 cm. The 10 most relevant radiomics features showed 82.2% accuracy in the classification of high-risk versus low-risk groups. The C-index of survival prediction with clinical parameters alone was 0.6785. The addition of CT radiomics features improved the C-index to 0.7414. CONCLUSION. Addition of CT radiomics features to standard clinical factors improves survival prediction in patients with PDAC.
Collapse
|
26
|
Fan ZY, Wu CW, An DA, Chen BH, Wesemann LD, He J, Hu JN, Bu J, Xu JR, Zhou Y, Wu LM. Myocardial area at risk and salvage in reperfused acute MI measured by texture analysis of cardiac T2 mapping and its prediction value of functional recovery in the convalescent stage. Int J Cardiovasc Imaging 2021; 37:3549-3560. [PMID: 34279752 DOI: 10.1007/s10554-021-02336-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES We sought to distinguish area at risk from salvage myocardial zone and to predict left ventricle functional recovery in the convalescent stage by Texture Analysis (TA) of T2-Mapping. METHODS One hundred and six patients diagnosed with AMI and treated with percutaneous coronary intervention (PCI) underwent acute cardiac magnetic resonance imaging (CMR) and 45 of whom had a subsequent CMR scan following recovery. Cine imaging, T2-Mapping, T2-weighted STIR imaging, and LGE imaging were performed. In the texture analysis, regions of interest (infarcted, salvageable, and remote) were drawn by two blinded, independent readers. RESULTS Seven independent texture features on T2-Mapping were selected: Perc.50%, S(2,2)InvDfMom, S(2.-2)AngScMom, S(4,0)Entropy, 45dgrLngREmph, 45dgr_Fraction and 135dr_GLevNonU. Among them, the average value of 135dr_GLevNonU in the infarct zone, AAR zone, and the remote zone was: 61.96±26.03, 31.811±18.933 and 99.839±26.231, respectively. Additionally, 135dr_GLevNonU provided the highest area under the curve (AUC) from the receiver operating characteristic curve (ROC curve) for distinguishing AAR from the infarct zone in each subgroup (all patients, patients with MVO and)were 0.845 ± 0.052 0.855 ± 0.083 and 0.845 ± 0.066, respectively, and were more promise than T2-Mapping mean (p<0.001). The AUC for differentiating AAR from the remote zone is 0.942±0.041. Texture features are not associated with convalescent decreased strain, ejection fraction (EF) or left ventricle remodeling (LVR) in analysis (p>0.05). CONCLUSION TA of T2-mapping can distinguish AAR from both the infarct zone and the remote myocardial zone without LGE imaging in reperfused AMI. However, these features are not able to predict patients' functional recovery in the convalescent stage.
Collapse
Affiliation(s)
- Zi-Yang Fan
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chong-Wen Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Luke D Wesemann
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Jie He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia-Ni Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Jun Bu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
27
|
Tang S, Ou J, Wu YP, Li R, Chen TW, Zhang XM. Contrast-enhanced CT radiomics features to predict recurrence of locally advanced oesophageal squamous cell cancer within 2 years after trimodal therapy: A case-control study. Medicine (Baltimore) 2021; 100:e26557. [PMID: 34232198 PMCID: PMC8270616 DOI: 10.1097/md.0000000000026557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 01/04/2023] Open
Abstract
Radiomics transforms the medical images into high-dimensional quantitative features and provides potential information about tumor phenotypes and heterogeneity. We conducted a retrospective analysis to explore and validate radiomics model based on contrast-enhanced computed tomography (CECT) to predict recurrence of locally advanced oesophageal squamous cell cancer (SCC) within 2 years after trimodal therapy. This study collected CECT and clinical data of consecutive 220 patients with pathology-confirmed locally advanced oesophageal SCC (154 in the training cohort and 66 in the validation cohort). Univariate statistical test and the least absolute shrinkage and selection operator method were performed to select the optimal radiomics features. Logistic regression was conducted to build radiomics model, clinical model, and combined model of both the radiomics and clinical features. Predictive performance was judged by the area under receiver operating characteristics curve (AUC), accuracy, and F1-score in the training and validation cohorts. Ten optimal radiomics features and/or 7 clinical features were selected to build radiomics model, clinical model, and the combined model. The integrated model of radiomics and clinical features was superior to radiomics model or clinical model in predicting recurrence of locally advanced oesophageal SCC within 2 years in the training (AUC: 0.879 vs 0.815 or 0.763; accuracy: 0.844 vs 0.773 or 0.740; and F1-score: 0.886 vs 0.839 or 0.815, respectively) and validation (AUC: 0.857 vs 0.720 or 0.750; accuracy: 0.788 vs 0.700 or 0.697; and F1-score: 0.851 vs 0.800 or 0.787, respectively) cohorts. The combined model of radiomics and clinical features shows better performance than the radiomics or clinical model to predict the recurrence of locally advanced oesophageal SCC within 2 years after trimodal therapy.
Collapse
Affiliation(s)
- Sun Tang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Radiology, Chongqing University Cancer Hospital/Chongqing Cancer Hospital, Chongqing, China
| | - Jing Ou
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu-Ping Wu
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Rui Li
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tian-Wu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
28
|
Hang J, Xu K, Yin R, Shao Y, Liu M, Shi H, Wang X, Wu L. Role of CT texture features for predicting outcome of pancreatic cancer patients with liver metastases. J Cancer 2021; 12:2351-2358. [PMID: 33758611 DOI: 10.7150/jca.49569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: The purpose of this study was to evaluate the prognostic value of computed tomography (CT) texture features of pancreatic cancer with liver metastases. Methods: We included 39 patients with metastatic pancreatic cancer (MPC) with liver metastases and performed texture analysis on primary tumors and metastases. The correlations between texture parameters were assessed using Pearson's correlation. Univariate Cox proportional hazards model was used to assess the correlations between clinicopathological characteristics, texture features and overall survival (OS). The univariate Cox regression model revealed four texture features potentially correlated with OS (P<0.1). A radiomics score (RS) was determined using a sequential combination of four texture features with potential prognostic value that were weighted according to their β-coefficients. Furthermore, all variables with P<0.1 were included in the multivariate analysis. A nomogram,which was developed to predict OS according to independent prognostic factors, was internally validated using the C-index and calibration plots. Kaplan-Meier analysis and the log-rank test were performed to stratify OS according to the RS and nomogram total points (NTP). Results: Few significant correlations were found between texture features of primary tumors and those of liver metastases. However, texture features within primary tumors or liver metastases were significantly associated. Multivariate analysis showed that Eastern Cooperative Oncology Group performance status (ECOG PS), chemotherapy, Carbohydrate antigen 19-9 (CA19-9), and the RS were independent prognostic factors (P<0.05). The nomogram incorporating these factors showed good discriminative ability (C-index = 0.754). RS and NTP stratified patients into two potential risk groups (P<0.01). Conclusion: The RS derived from significant texture features of primary tumors and metastases shows promise as a prognostic biomarker of OS of patients with MPC. A nomogram based on the RS and other independent prognostic clinicopathological factors accurately predicts OS.
Collapse
Affiliation(s)
- Junjie Hang
- Department of Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Xinglong Road 19, Changzhou 213000, China
| | - Kequn Xu
- Department of Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Xinglong Road 19, Changzhou 213000, China
| | - Ruohan Yin
- Department of Medical Imaging, Changzhou No.2 People's Hospital, Nanjing Medical University, Xinglong Road 19, Changzhou 213000, China
| | - Yueting Shao
- Department of Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Xinglong Road 19, Changzhou 213000, China
| | - Muhan Liu
- Department of Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Xinglong Road 19, Changzhou 213000, China
| | - Haifeng Shi
- Department of Medical Imaging, Changzhou No.2 People's Hospital, Nanjing Medical University, Xinglong Road 19, Changzhou 213000, China
| | - Xiaoyong Wang
- Department of Gastroenterology, Changzhou No.2 People's Hospital, Nanjing Medical University, Xinglong Road 19, Changzhou 213000, China
| | - Lixia Wu
- Department of Oncology, Shanghai JingAn District ZhaBei Central Hospital, Zhonghuaxin Road 619, Shanghai 200040, China
| |
Collapse
|
29
|
Hull A, Li Y, Bartholomeusz D, Hsieh W, Escarbe S, Ruszkiewicz A, Bezak E. The Expression Profile and Textural Characteristics of C595-Reactive MUC1 in Pancreatic Ductal Adenocarcinoma for Targeted Radionuclide Therapy. Cancers (Basel) 2020; 13:cancers13010061. [PMID: 33379259 PMCID: PMC7796161 DOI: 10.3390/cancers13010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a cancer of low survival needing novel treatment approaches such as targeted therapies. If a target is overexpressed on PDAC cells but has minimal expression on normal cells, it is considered a good candidate for targeted therapy. Identifying targets with this expression pattern can help to optimise targeted therapies to be therapeutically effective without compromising on tolerability. The aim of this study was to assess the expression of the MUC1 receptor using the C595 antibody. We performed a series of cell line and tissue studies to identify if the expression of the MUC1 receptor changes between different pancreatic pathologies, including PDAC and normal pancreatic tissue. We found that the MUC1 receptor is both overexpressed and more uniformly expressed in PDAC compared to the other tissue types assessed. This indicates that the MUC1 receptor is a feasible target for targeted therapies of PDAC. Abstract Improvements in the prognosis of pancreatic ductal adenocarcinoma (PDAC) rely on the development of effective treatments to target advanced disease. Mucin 1 (MUC1) is a transmembrane glycoprotein which is involved in the metastatic progression of PDAC and is a receptor-of-interest for targeted radionuclide therapy. The aim of this study was to determine the feasibility of MUC1-based targeted radionuclide therapy for PDAC, by evaluating the expression profile of MUC1 in different pancreatic cells and tissues using the C595 antibody. MUC1 expression was evaluated in four PDAC cell lines (PANC-1, BxPC-3, CAPAN-1 and AsPC-1) using flow cytometry and immunocytochemistry. Immunohistochemistry was performed on primary and metastatic PDAC, pancreatitis, pancreatic intra-epithelial neoplasia and normal pancreatic tissue samples to identify potential changes in C595-reactive MUC1 expression across different disease groups. C595-reactive MUC1 expression was found to varying degrees in the cell lines (11.5–93.1%). A pixel analysis of the immunohistochemical staining demonstrated highest MUC1 expression in primary PDAC tissue (mean pixel value of 205.4), followed by other pancreatic cancer types (204.9), pancreatic intra-epithelial neoplasia (203.8), metastatic PDAC (201.5), chronic pancreatitis (198.1) and normal pancreatic tissue (191.4). The increased expression in malignant tissues and reduced expression in benign tissues indicate that C595-reactive MUC1 is a potential target for targeted radionuclide therapy of PDAC.
Collapse
Affiliation(s)
- Ashleigh Hull
- Cancer Research Institute and Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia; (Y.L.); (W.H.); (E.B.)
- Correspondence:
| | - Yanrui Li
- Cancer Research Institute and Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia; (Y.L.); (W.H.); (E.B.)
| | - Dylan Bartholomeusz
- Department of PET, Nuclear Medicine & Bone Densitometry, SA Medical Imaging, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - William Hsieh
- Cancer Research Institute and Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia; (Y.L.); (W.H.); (E.B.)
- Department of PET, Nuclear Medicine & Bone Densitometry, SA Medical Imaging, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Samantha Escarbe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (S.E.); (A.R.)
| | - Andrew Ruszkiewicz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (S.E.); (A.R.)
- Division of Anatomical Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Eva Bezak
- Cancer Research Institute and Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, SA 5000, Australia; (Y.L.); (W.H.); (E.B.)
- Department of Physics, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
30
|
Vosshenrich J, Zech CJ, Heye T, Boldanova T, Fucile G, Wieland S, Heim MH, Boll DT. Response prediction of hepatocellular carcinoma undergoing transcatheter arterial chemoembolization: unlocking the potential of CT texture analysis through nested decision tree models. Eur Radiol 2020; 31:4367-4376. [PMID: 33274405 PMCID: PMC8128820 DOI: 10.1007/s00330-020-07511-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Objectives To investigate if nested multiparametric decision tree models based on tumor size and CT texture parameters from pre-therapeutic imaging can accurately predict hepatocellular carcinoma (HCC) lesion response to transcatheter arterial chemoembolization (TACE). Materials and methods This retrospective study (January 2011–September 2017) included consecutive pre- and post-therapeutic dynamic CT scans of 37 patients with 92 biopsy-proven HCC lesions treated with drug-eluting bead TACE. Following manual segmentation of lesions according to modified Response Evaluation Criteria in Solid Tumors criteria on baseline arterial phase CT images, tumor size and quantitative texture parameters were extracted. HCCs were grouped into lesions undergoing primary TACE (VT-lesions) or repeated TACE (RT-lesions). Distinct multiparametric decision tree models to predict complete response (CR) and progressive disease (PD) for the two groups were generated. AUC and model accuracy were assessed. Results Thirty-eight of 72 VT-lesions (52.8%) and 8 of 20 RT-lesions (40%) achieved CR. Sixteen VT-lesions (22.2%) and 8 RT-lesions (40%) showed PD on follow-up imaging despite TACE treatment. Mean of positive pixels (MPP) was significantly higher in VT-lesions compared to RT-lesions (180.5 vs 92.8, p = 0.001). The highest AUC in ROC curve analysis and accuracy was observed for the prediction of CR in VT-lesions (AUC 0.96, positive predictive value 96.9%, accuracy 88.9%). Prediction of PD in VT-lesions (AUC 0.88, accuracy 80.6%), CR in RT-lesions (AUC 0.83, accuracy 75.0%), and PD in RT-lesions (AUC 0.86, accuracy 80.0%) was slightly inferior. Conclusions Nested multiparametric decision tree models based on tumor heterogeneity and size can predict HCC lesion response to TACE treatment with high accuracy. They may be used as an additional criterion in the multidisciplinary treatment decision-making process. Key Points • HCC lesion response to TACE treatment can be predicted with high accuracy based on baseline tumor heterogeneity and size. • Complete response of HCC lesions undergoing primary TACE was correctly predicted with 88.9% accuracy and a positive predictive value of 96.9%. • Progressive disease was correctly predicted with 80.6% accuracy for lesions undergoing primary TACE and 80.0% accuracy for lesions undergoing repeated TACE. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-020-07511-3.
Collapse
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Christoph J Zech
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Tobias Heye
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Tuyana Boldanova
- Clarunis - University Center for Gastrointestinal and Liver Diseases, Petersgraben 4, 4031, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Geoffrey Fucile
- sciCORE - Center for Scientific Computing, University of Basel, Klingelbergstrasse 50/70, 4031, Basel, Switzerland
| | - Stefan Wieland
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Markus H Heim
- Clarunis - University Center for Gastrointestinal and Liver Diseases, Petersgraben 4, 4031, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Daniel T Boll
- Department of Radiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| |
Collapse
|
31
|
Bartoli M, Barat M, Dohan A, Gaujoux S, Coriat R, Hoeffel C, Cassinotto C, Chassagnon G, Soyer P. CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol 2020; 38:1111-1124. [PMID: 33085029 DOI: 10.1007/s11604-020-01057-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Radiomics is a relatively new approach for image analysis. As a part of radiomics, texture analysis, which consists in extracting a great amount of quantitative data from original images, can be used to identify specific features that can help determining the actual nature of a pancreatic lesion and providing other information such as resectability, tumor grade, tumor response to neoadjuvant therapy or survival after surgery. In this review, the basic of radiomics, recent developments and the results of texture analysis using computed tomography and magnetic resonance imaging in the field of pancreatic tumors are presented. Future applications of radiomics, such as artificial intelligence, are discussed.
Collapse
Affiliation(s)
- Marion Bartoli
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Maxime Barat
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
| | - Anthony Dohan
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
| | - Sébastien Gaujoux
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
- Department of Abdominal Surgery, Cochin Hospital, AP-HP, 75014, Paris, France
| | - Romain Coriat
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
- Department of Gastroenterology, Cochin Hospital, AP-HP, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Robert Debré Hospital, 51092, Reims, France
| | - Christophe Cassinotto
- Department of Radiology, CHU Montpellier, University of Montpellier, Saint-Éloi Hospital, 34000, Montpellier, France
| | - Guillaume Chassagnon
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
| | - Philippe Soyer
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France.
| |
Collapse
|
32
|
Abunahel BM, Pontre B, Kumar H, Petrov MS. Pancreas image mining: a systematic review of radiomics. Eur Radiol 2020; 31:3447-3467. [PMID: 33151391 DOI: 10.1007/s00330-020-07376-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To systematically review published studies on the use of radiomics of the pancreas. METHODS The search was conducted in the MEDLINE database. Human studies that investigated the applications of radiomics in diseases of the pancreas were included. The radiomics quality score was calculated for each included study. RESULTS A total of 72 studies encompassing 8863 participants were included. Of them, 66 investigated focal pancreatic lesions (pancreatic cancer, precancerous lesions, or benign lesions); 4, pancreatitis; and 2, diabetes mellitus. The principal applications of radiomics were differential diagnosis between various types of focal pancreatic lesions (n = 19), classification of pancreatic diseases (n = 23), and prediction of prognosis or treatment response (n = 30). Second-order texture features were most useful for the purpose of differential diagnosis of diseases of the pancreas (with 100% of studies investigating them found a statistically significant feature), whereas filtered image features were most useful for the purpose of classification of diseases of the pancreas and prediction of diseases of the pancreas (with 100% of studies investigating them found a statistically significant feature). The median radiomics quality score of the included studies was 28%, with the interquartile range of 22% to 36%. The radiomics quality score was significantly correlated with the number of extracted radiomics features (r = 0.52, p < 0.001) and the study sample size (r = 0.34, p = 0.003). CONCLUSIONS Radiomics of the pancreas holds promise as a quantitative imaging biomarker of both focal pancreatic lesions and diffuse changes of the pancreas. The usefulness of radiomics features may vary depending on the purpose of their application. Standardisation of image acquisition protocols and image pre-processing is warranted prior to considering the use of radiomics of the pancreas in routine clinical practice. KEY POINTS • Methodologically sound studies on radiomics of the pancreas are characterised by a large sample size and a large number of extracted features. • Optimisation of the radiomics pipeline will increase the clinical utility of mineable pancreas imaging data. • Radiomics of the pancreas is a promising personalised medicine tool in diseases of the pancreas.
Collapse
Affiliation(s)
| | - Beau Pontre
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
33
|
Wu H, Wu C, Zheng H, Wang L, Guan W, Duan S, Wang D. Radiogenomics of neuroblastoma in pediatric patients: CT-based radiomics signature in predicting MYCN amplification. Eur Radiol 2020; 31:3080-3089. [PMID: 33118047 DOI: 10.1007/s00330-020-07246-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/16/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To construct a CT-based radiomics signature and assess its performance in predicting MYCN amplification (MNA) in pediatric patients with neuroblastoma. METHODS Seventy-eight pediatric patients with neuroblastoma were recruited (55 in training cohort and 23 in test cohort). Radiomics features were extracted automatically from the region of interest (ROI) manually delineated on the three-phase computed tomography (CT) images. Selected radiomics features were retained to construct radiomics signature and a radiomics score (rad-score) was calculated by using the radiomics signature-based formula. A clinical model was established with clinical factors, including clinicopathological data, and CT image features. A combined nomogram was developed with the incorporation of a radiomics signature and clinical factors. The predictive performance was assessed by receiver operating characteristics curve (ROC) analysis and decision curve analysis (DCA). RESULTS The radiomics signature was constructed using 7 selected radiomics features. The clinical radiomics nomogram, which was based on the radiomics signature and two clinical factors, showed superior predictive performance compared with the clinical model alone (area under the curve (AUC) in the training cohort: 0.95 vs. 0.82, the test cohort: 0.91 vs. 0.70). The clinical utility of clinical radiomics nomogram was confirmed by DCA. CONCLUSIONS This proposed CT-based radiomics signature was able to predict MNA. Combining the radiomics signature with clinical factors outperformed using clinical model alone for MNA prediction. KEY POINTS • A CT-based radiomics signature has the ability to predict MYCN amplification (MNA) in neuroblastoma. • Both pre- and post-contrast CT images are valuable in predicting MNA. • Associating the radiomics signature with clinical factors improved the predictive performance of MNA, compared with clinical model alone.
Collapse
Affiliation(s)
- Haoting Wu
- Department of Radiology, Xinhua Hospital affiliated of Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Yangpu District, Shanghai City, 200082, China
| | - Chenqing Wu
- Department of Radiology, Xinhua Hospital affiliated of Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Yangpu District, Shanghai City, 200082, China
| | - Hui Zheng
- Department of Radiology, Xinhua Hospital affiliated of Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Yangpu District, Shanghai City, 200082, China
| | - Lei Wang
- Department of Radiology, Xinhua Hospital affiliated of Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Yangpu District, Shanghai City, 200082, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital affiliated of Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Yangpu District, Shanghai City, 200082, China
| | - Shaofeng Duan
- GE Healthcare, Pudong New Town, No.1, Huatuo Road, Shanghai, 210000, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital affiliated of Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Yangpu District, Shanghai City, 200082, China.
| |
Collapse
|
34
|
Chu LC, Park S, Kawamoto S, Yuille AL, Hruban RH, Fishman EK. Pancreatic Cancer Imaging: A New Look at an Old Problem. Curr Probl Diagn Radiol 2020; 50:540-550. [PMID: 32988674 DOI: 10.1067/j.cpradiol.2020.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Computed tomography is the most commonly used imaging modality to detect and stage pancreatic cancer. Previous advances in pancreatic cancer imaging have focused on optimizing image acquisition parameters and reporting standards. However, current state-of-the-art imaging approaches still misdiagnose some potentially curable pancreatic cancers and do not provide prognostic information or inform optimal management strategies beyond stage. Several recent developments in pancreatic cancer imaging, including artificial intelligence and advanced visualization techniques, are rapidly changing the field. The purpose of this article is to review how these recent advances have the potential to revolutionize pancreatic cancer imaging.
Collapse
Affiliation(s)
- Linda C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Seyoun Park
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alan L Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD
| | - Ralph H Hruban
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
35
|
Chen BB. Artificial intelligence in pancreatic disease. Artif Intell Med Imaging 2020; 1:19-30. [DOI: 10.35711/aimi.v1.i1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the application of artificial intelligence (AI) in radiology has been growing rapidly, fueled by the availability of large datasets, advances in computing power, and newly developed algorithms. Progress in AI applied to medical imaging analyses has transformed these images into quantitative data, termed radiomics. When combined with patients’ clinical data, these models, when developed by machine learning, have the potential to improve diagnostic, prognostic, and predictive accuracy. Currently, limited literature is available on the use of radiomics for pancreatic disease. Here, we will review recent studies in the application of AI in a variety of pancreatic diseases, mainly involving lesion detection, tumor characterization, tumor grading, response, and prognosis evaluation. Finally, we will also discuss the challenges and prospects in the field of radiomics for pancreatic disease.
Collapse
Affiliation(s)
- Bang-Bin Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei 10016, Taiwan
- Department of Radiology, College of Medicine, National Taiwan University, Taipei 10016, Taiwan
| |
Collapse
|