1
|
Wu P, Wang P, Cao W, Liu N, Zou H, Yang G. Ultrafast and Highly Efficient Laser Extraction of Matrine and Oxymatrine from Sophora flavescens for the Anticancer Activity. ACS OMEGA 2024; 9:38846-38854. [PMID: 39310152 PMCID: PMC11411678 DOI: 10.1021/acsomega.4c05003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Matrine and oxymatrine are mainly obtained from Sophora flavescens using the high-temperature and prolonged solvent extraction methods currently employed in industries. In this study, an ultrafast and highly efficient method for extracting matrine and oxymatrine from S. flavescens at room temperature using laser technology, specifically, laser extraction, was demonstrated. The laser extraction rates for matrine and oxymatrine from S. flavescens at room temperature for 1 min were 266.40 and 936.80 mg(g·h)-1, respectively. These rates were 1400 times higher than those achieved with conventional solvent extraction. These results mean that 1 min of laser extraction is equivalent to 24 h of solvent extraction. The reason for such a high efficiency is that laser-induced cavitation can accelerate the rapid release of alkaloid molecules in plant cells. Mass spectrum, nuclear magnetic resonance, and Fourier-transform infrared spectrum analyses of the extracted matrine and oxymatrine compounds confirmed that they are the same as the products of solvent extraction. Furthermore, it was found that the anticancer activity of laser-extracted compounds is slightly better than that of conventionally solvent-extracted ones, likely due to the slight change in the microstructure or conformation of these compounds under laser irradiation. These findings demonstrated that the laser extraction method was ultrafast and highly efficient, unveiling a novel approach to alkaloid extraction. This discovery will have significant implications for the extraction and utilization of alkaloids from plants.
Collapse
Affiliation(s)
- Peishi Wu
- State
Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology
Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Pingping Wang
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Weiwei Cao
- State
Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology
Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ning Liu
- State
Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology
Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Guowei Yang
- State
Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology
Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
2
|
McGraw E, Laurent GM, Avila LA. Nanoparticle-mediated photoporation - an emerging versatile physical drug delivery method. NANOSCALE ADVANCES 2024:d4na00122b. [PMID: 39280791 PMCID: PMC11391416 DOI: 10.1039/d4na00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024]
Abstract
Facilitating the delivery of impermeable molecules into cells stands as a pivotal step for both basic research and therapeutic delivery. While current methods predominantly use nanoparticles or viral vectors, the exploration of physical phenomena, particularly light-based techniques, remains relatively under-explored. Photoporation, a physical method, employs either pulsed or continuous wave lasers to create transient pores in cell membranes. These openings enable the entry of exogenous, membrane-impermeable molecules into the cytosol while preserving cell viability. Poration can either be achieved directly through focusing a laser beam onto a cell membrane, or indirectly through the addition of sensitizing nanoparticles that interact with the laser pulses. Nanoparticle-mediated photoporation specifically has recently been receiving increasing attention for the high-throughput ability to transfect cells, which also has exciting potential for clinical translation. Here, we begin with a snapshot of the current state of direct and indirect photoporation and the mechanisms that contribute to cell pore formation and molecule delivery. Following this, we present an outline of the evolution of photoporation methodologies for mammalian and non-mammalian cells, accompanied by a description of variations in experimental setups among photoporation systems. Finally, we discuss the potential clinical translation of photoporation and offer our perspective on recent key findings in the field, addressing unmet needs, gaps, and inconsistencies.
Collapse
Affiliation(s)
- Erin McGraw
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| | | | - L Adriana Avila
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| |
Collapse
|
3
|
Anggraini D, Zhang T, Liu X, Okano K, Tanaka Y, Inagaki N, Li M, Hosokawa Y, Yamada S, Yalikun Y. Guided axon outgrowth of neurons by molecular gradients generated from femtosecond laser-fabricated micro-holes. Talanta 2024; 267:125200. [PMID: 37738745 DOI: 10.1016/j.talanta.2023.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE Transplantation of scaffold-embedded guided neurons has been reported to increase neuronal regeneration following brain injury. However, precise axonal integration between host and transplant neurons to form functional synapses remains a major problem. Thus, a high-precision tool to actuate neuronal axon outgrowth in real-time conditions is required to attain robust axon regeneration. This study aims to establish a microfluidic platform for precise and real-time axon outgrowth guidance. METHODS A microfluidic device with a 4 μm thick thin-glass sheet as the neuron culture substrate is fabricated. Surface of the glass sheet is chemically modified to facilitate neuron attachment. Femtosecond (fs) laser is used to engrave the glass sheet to achieve micro-holes, where netrin-1 is released for directing the movement of the neuronal axon. RESULTS Numerical simulation and experimental data demonstrate that netrin-1 gradient is formed after it passes through the micro-hole. The neuronal response results show the outgrowth rate of the axon is significantly increased by netrin-1 gradient. Furthermore, a majority of neuronal axons exhibit guided outgrowth characterized by positive turning angles of axon displacement in the direction of netrin-1 gradients. CONCLUSION Integrating fs laser and microfluidic device facilitates controlled and instantaneous axon outgrowth in a non-invasive manner. SIGNIFICANCE The developed real-time microfluidic platform shows potential in the application for on-site neuronal transplantation, which is significant for the treatment of a range of neurological disorders and injuries.
Collapse
Affiliation(s)
- Dian Anggraini
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Tianlong Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xun Liu
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Kazunori Okano
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, 565-0871, Japan
| | - Naoyuki Inagaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2122, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Sohei Yamada
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan; Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
5
|
Heinemann D, Zabic M, Terakawa M, Boch J. Laser-based molecular delivery and its applications in plant science. PLANT METHODS 2022; 18:82. [PMID: 35690858 PMCID: PMC9188231 DOI: 10.1186/s13007-022-00908-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
Lasers enable modification of living and non-living matter with submicron precision in a contact-free manner which has raised the interest of researchers for decades. Accordingly, laser technologies have drawn interest across disciplines. They have been established as a valuable tool to permeabilize cellular membranes for molecular delivery in a process termed photoinjection. Laser-based molecular delivery was first reported in 1984, when normal kidney cells were successfully transfected with a frequency-multiplied Nd:YAG laser. Due to the rapid development of optical technologies, far more sophisticated laser platforms have become available. In particular, near infrared femtosecond (NIR fs) laser sources enable an increasing progress of laser-based molecular delivery procedures and opened up multiple variations and applications of this technique.This review is intended to provide a plant science audience with the physical principles as well as the application potentials of laser-based molecular delivery. The historical origins and technical development of laser-based molecular delivery are summarized and the principle physical processes involved in these approaches and their implications for practical use are introduced. Successful cases of laser-based molecular delivery in plant science will be reviewed in detail, and the specific hurdles that plant materials pose will be discussed. Finally, we will give an outlook on current limitations and possible future applications of laser-based molecular delivery in the field of plant science.
Collapse
Affiliation(s)
- Dag Heinemann
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167, Hannover, Germany.
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany.
| | - Miroslav Zabic
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167, Hannover, Germany
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Mitsuhiro Terakawa
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Jens Boch
- Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
6
|
Yoneda A, Ohtani M, Katagiri D, Hosokawa Y, Demura T. Hechtian Strands Transmit Cell Wall Integrity Signals in Plant Cells. PLANTS 2020; 9:plants9050604. [PMID: 32397402 PMCID: PMC7284614 DOI: 10.3390/plants9050604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023]
Abstract
Hechtian strands are thread-like structures in plasmolyzed plant cells that connect the cell wall to the plasma membrane. Although these strands were first observed more than 100 years ago, their physiological roles are largely unknown. Here, we used intracellular laser microdissection to examine the effects of disrupting Hechtian strands on plasmolyzed tobacco BY-2 cells. When we focused femtosecond laser pulses on Hechtian strands, targeted disruptions were induced, but no visible changes in cell morphology were detected. However, the calcofluor white signals from β-glucans was detected in plasmolyzed cells with disrupted Hechtian strands, whereas no signals were detected in untreated plasmolyzed cells. These results suggest that Hechtian strands play roles in sensing cell wall integrity.
Collapse
Affiliation(s)
- Arata Yoneda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Daisuke Katagiri
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
| | - Yoichiroh Hosokawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (A.Y.); (M.O.); (D.K.); (Y.H.)
- Correspondence: ; Tel.: +81-743-72-5460
| |
Collapse
|