1
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Zhai L, Huang C, Ning Z, Zhang Y, Zhuang M, Yang W, Wang X, Wang J, Zhang L, Xiao H, Zhao L, Asthana P, Lam YY, Chow CFW, Huang JD, Yuan S, Chan KM, Yuan CS, Lau JYN, Wong HLX, Bian ZX. Ruminococcus gnavus plays a pathogenic role in diarrhea-predominant irritable bowel syndrome by increasing serotonin biosynthesis. Cell Host Microbe 2023; 31:33-44.e5. [PMID: 36495868 DOI: 10.1016/j.chom.2022.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D), a globally prevalent functional gastrointestinal (GI) disorder, is associated with elevated serotonin that increases gut motility. While anecdotal evidence suggests that the gut microbiota contributes to serotonin biosynthesis, mechanistic insights are limited. We determined that the bacterium Ruminococcus gnavus plays a pathogenic role in IBS-D. Monocolonization of germ-free mice with R. gnavus induced IBS-D-like symptoms, including increased GI transit and colonic secretion, by stimulating the production of peripheral serotonin. R. gnavus-mediated catabolism of dietary phenylalanine and tryptophan generated phenethylamine and tryptamine that directly stimulated serotonin biosynthesis in intestinal enterochromaffin cells via a mechanism involving activation of trace amine-associated receptor 1 (TAAR1). This R. gnavus-driven increase in serotonin levels elevated GI transit and colonic secretion but was abrogated upon TAAR1 inhibition. Collectively, our study provides molecular and pathogenetic insights into how gut microbial metabolites derived from dietary essential amino acids affect serotonin-dependent control of gut motility.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ziwan Ning
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yijing Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Min Zhuang
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Yang
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaolei Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Jingjing Wang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pallavi Asthana
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chi Fung Willis Chow
- Center for Systems Biology Dresden, Max Planck Institute for Molecular Cell and Biology, Dresden, Germany
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Johnson Yiu-Nam Lau
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
3
|
Kelpšas V, von Wachenfeldt C. Enhancing protein perdeuteration by experimental evolution of Escherichia coli K-12 for rapid growth in deuterium-based media. Protein Sci 2021; 30:2457-2473. [PMID: 34655136 PMCID: PMC8605374 DOI: 10.1002/pro.4206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022]
Abstract
Deuterium is a natural low abundance stable hydrogen isotope that in high concentrations negatively affects growth of cells. Here, we have studied growth of Escherichia coli MG1655, a wild-type laboratory strain of E. coli K-12, in deuterated glycerol minimal medium. The growth rate and final biomass in deuterated medium is substantially reduced compared to cells grown in ordinary medium. By using a multi-generation adaptive laboratory evolution-based approach, we have isolated strains that show increased fitness in deuterium-based growth media. Whole-genome sequencing identified the genomic changes in the obtained strains and show that there are multiple routes to genetic adaptation to growth in deuterium-based media. By screening a collection of single-gene knockouts of nonessential genes, no specific gene was found to be essential for growth in deuterated minimal medium. Deuteration of proteins is of importance for NMR spectroscopy, neutron protein crystallography, neutron reflectometry, and small angle neutron scattering. The laboratory evolved strains, with substantially improved growth rate, were adapted for recombinant protein production by T7 RNA polymerase overexpression systems and shown to be suitable for efficient production of perdeuterated soluble and membrane proteins for structural biology applications.
Collapse
Affiliation(s)
- Vinardas Kelpšas
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
4
|
Evolving Escherichia coli Host Strains for Efficient Deuterium Labeling of Recombinant Proteins Using Sodium Pyruvate- d3. Int J Mol Sci 2021; 22:ijms22189678. [PMID: 34575837 PMCID: PMC8465070 DOI: 10.3390/ijms22189678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Labeling of proteins with deuterium (2H) is often necessary for structural biology techniques, such as neutron crystallography, NMR spectroscopy, and small-angle neutron scattering. Perdeuteration in which all protium (1H) atoms are replaced by deuterium is a costly process. Typically, expression hosts are grown in a defined medium with heavy water as the solvent, which is supplemented with a deuterated carbon source. Escherichia coli, which is the most widely used host for recombinant protein production, can utilize several compounds as a carbon source. Glycerol-d8 is often used as a carbon source for deuterium labelling due to its lower cost compered to glucose-d7. In order to expand available options for recombinant protein deuteration, we investigated the possibility of producing a deuterated carbon source in-house. E. coli can utilize pyruvate as a carbon source and pyruvate-d3 can be made by a relatively simple procedure. To circumvent the very poor growth of E. coli in minimal media with pyruvate as sole carbon source, adaptive laboratory evolution for strain improvement was applied. E. coli strains with enhanced growth in minimal pyruvate medium was subjected to whole genome sequencing and the genetic changes were revealed. One of the evolved strains was adapted for the widely used T7 RNA polymerase overexpression systems. Using the improved strain E. coli DAP1(DE3) and in-house produced deuterated carbon source (pyruvic acid-d4 and sodium pyruvate-d3), we produce deuterated (>90%) triose-phosphate isomerase, at quantities sufficient enough for large volume crystal production and subsequent analysis by neutron crystallography.
Collapse
|
5
|
Aggarwal S, Wachenfeldt CV, Fisher SZ, Oksanen E. A protocol for production of perdeuterated OmpF porin for neutron crystallography. Protein Expr Purif 2021; 188:105954. [PMID: 34416360 DOI: 10.1016/j.pep.2021.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/31/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Hydrogen atoms are at the limit of visibility in X-ray structures even at high resolution. Neutron macromolecular crystallography (NMX) is an unambiguous method to locate hydrogens and study the significance of hydrogen bonding interactions in biological systems. Since NMX requires very large crystals, very few neutron structures of proteins have been determined yet. In addition, the most common hydrogen isotope 1H gives rise to significant background due to its large incoherent scattering cross-section. Therefore, it is advantageous to substitute as many hydrogens as possible with the heavier isotope 2H (deuterium) to reduce the sample volume requirement. While the solvent exchangeable hydrogens can be substituted by dissolving the protein in heavy water, complete deuterium labelling - perdeuteration - requires the protein to be expressed in heavy water with a deuterated carbon source. In this work, we developed an optimized method for large scale production of deuterium-labelled bacterial outer membrane protein F (OmpF) for NMX. OmpF was produced using deuterated media with different carbon sources. Mass spectrometry verified the integrity and level of deuteration of purified OmpF. Perdeuterated OmpF crystals diffracted X-rays to a resolution of 1.9 Å. This work lays the foundation for structural studies of membrane protein by neutron diffraction in future.
Collapse
Affiliation(s)
- Swati Aggarwal
- European Spallation Source ERIC, Odarslövsvägen 113, SE-225 92, Lund, Sweden; University Grenoble Alpes, CEA, CNRS, IBS, FR-380 00, Grenoble, France
| | | | - Suzanne Zoë Fisher
- European Spallation Source ERIC, Odarslövsvägen 113, SE-225 92, Lund, Sweden; Department of Biology, Lund University, Sölvegatan 35, Lund, SE-22 362, Sweden
| | - Esko Oksanen
- European Spallation Source ERIC, Odarslövsvägen 113, SE-225 92, Lund, Sweden.
| |
Collapse
|
6
|
Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S. Efficient production of a functional G protein-coupled receptor in E. coli for structural studies. JOURNAL OF BIOMOLECULAR NMR 2021; 75:25-38. [PMID: 33501610 PMCID: PMC7897205 DOI: 10.1007/s10858-020-00354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey β1-adrenergic receptor (β1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2-0.3 mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-β1AR in three different functional states (antagonist, agonist, and agonist + G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.
Collapse
Affiliation(s)
- Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Marco Rogowski
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Antoine Gautier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|