1
|
Tribhuvan KU, Shivakumaraswamy M, Mishra T, Kaur S, Sarkar B, Pattanayak A, Singh BK. Identification, genomic localization, and functional validation of salt-stress-related lncRNAs in Indian Mustard (Brassica juncea L.). BMC Genomics 2024; 25:1121. [PMID: 39567864 PMCID: PMC11580500 DOI: 10.1186/s12864-024-10964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Indian Mustard (Brassica juncea L.) is a globally cultivated winter oilseed crop of the rapeseed-mustard group. It is predominantly grown in the semi-arid northwest agroclimatic zone of India, characterized by high soil salinity. Enhancing tolerance to salt stress in B. juncea is therefore crucial for sustaining its production in this region. Long non-coding RNAs (lncRNAs) play critical roles in coordinating gene expression under various abiotic stresses, including salt stress, but their involvement in the salt stress response in B. juncea remains largely unknown. In this study, we conducted RNA-seq analysis on control, salt-stressed, and salt-shocked young leaves of the salt-tolerant B. juncea cv CS-52. We identified a total of 3,602 differentially expressed transcripts between stress versus control and shock versus control samples. Among these, 61 were identified as potential lncRNAs, with 21 specific to salt stress and 40 specific to salt shock. Of the 21 lncRNAs specific to salt stress, 15 were upregulated and six were downregulated, while all 40 lncRNAs unique to salt shock were downregulated. Chromosomal distribution analysis of the lncRNAs revealed their uneven placement across 18 chromosomes in B. juncea. RNA-RNA interaction analysis between salt stress-upregulated lncRNAs and salt stress-related miRNAs identified 26 interactions between 10 lncRNAs and 23 miRNAs and predicted 13 interactions between six miRNAs and 13 mRNAs. Finally, six lncRNA-miRNA-mRNA interaction networks were established, involving five lncRNAs, 13 miRNAs, and 23 mRNAs. RT-qPCR analysis revealed the upregulation of four out of five lncRNAs, along with their target mRNAs, supporting their involvement in the salt stress response in B. juncea.
Collapse
Affiliation(s)
- Kishor U Tribhuvan
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - M Shivakumaraswamy
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Twinkle Mishra
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Simardeep Kaur
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793 103, India
| | - Biplab Sarkar
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - A Pattanayak
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Binay K Singh
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India.
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793 103, India.
| |
Collapse
|
2
|
Pinky, Jain R, Yadav A, Sharma R, Dhaka N. Emerging roles of long non-coding RNAs in regulating agriculturally important seed traits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108019. [PMID: 37714026 DOI: 10.1016/j.plaphy.2023.108019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Seeds have enormous economic importance as source of calories, nutrition, edible oil, and biofuels. Therefore, seed traits like seed size and shape, weight, micronutrient content, oil content, quality, post-harvest sprouting, etc., are some of the main targets in crop improvement. Designing the strategies for their improvement benefits heavily from understanding the regulatory aspects of seed development. Recent studies indicate that long non-coding RNAs (lncRNAs) are one of the important regulators of seed development. They played a significant role in crop domestication by influencing seed traits. LncRNAs are conventionally defined as non-coding RNAs greater than 200 bp in length but lacking protein coding potential. Here we highlight the emerging pieces of evidence of lncRNA-mediated regulation of seed development through diverse mechanisms, for instance, by acting as target mimics or precursors of regulatory small RNAs or through chromatin remodeling and post-transcriptional repression. We also enumerate the insights from high-throughput transcriptomic studies from developing seeds of cereal, oilseed, biofuel, and pulse crops. We highlight the lncRNA candidates and lncRNA-mediated regulatory networks regulating seed development and related agronomic traits. Further, we discuss the potential of lncRNAs for improvement of agriculturally important seed traits through marker-assisted breeding and/or transgenic approaches.
Collapse
Affiliation(s)
- Pinky
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinandan Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| |
Collapse
|
3
|
Saxena S, Das A, Kaila T, Ramakrishna G, Sharma S, Gaikwad K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genomics 2023; 45:783-811. [PMID: 37115379 DOI: 10.1007/s13258-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
4
|
Yu S, Zhang Z, Li J, Zhu Y, Yin Y, Zhang X, Dai Y, Zhang A, Li C, Zhu Y, Fan J, Ruan Y, Dong X. Genome-wide identification and characterization of lncRNAs in sunflower endosperm. BMC PLANT BIOLOGY 2022; 22:494. [PMID: 36271333 PMCID: PMC9587605 DOI: 10.1186/s12870-022-03882-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), as important regulators, play important roles in plant growth and development. The expression and epigenetic regulation of lncRNAs remain uncharacterized generally in plant seeds, especially in the transient endosperm of the dicotyledons. RESULTS In this study, we identified 11,840 candidate lncRNAs in 12 day-after-pollination sunflower endosperm by analyzing RNA-seq data. These lncRNAs were evenly distributed in all chromosomes and had specific features that were distinct from mRNAs including tissue-specificity expression, shorter and fewer exons. By GO analysis of protein coding genes showing strong correlation with the lncRNAs, we revealed that these lncRNAs potential function in many biological processes of seed development. Additionally, genome-wide DNA methylation analyses revealed that the level of DNA methylation at the transcription start sites was negatively correlated with gene expression levels in lncRNAs. Finally, 36 imprinted lncRNAs were identified including 32 maternally expressed lncRNAs and four paternally expressed lncRNAs. In CG and CHG context, DNA methylation levels of imprinted lncRNAs in the upstream and gene body regions were slightly lower in the endosperm than that in embryo tissues, which indicated that the maternal demethylation potentially induce the paternally bias expression of imprinted lncRNAs in sunflower endosperm. CONCLUSION Our findings not only identified and characterized lncRNAs on a genome-wide scale in the development of sunflower endosperm, but also provide novel insights into the parental effects and epigenetic regulation of lncRNAs in dicotyledonous seeds.
Collapse
Affiliation(s)
- Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Yanzhe Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China.
| |
Collapse
|
5
|
An integrated transcriptome mapping the regulatory network of coding and long non-coding RNAs provides a genomics resource in chickpea. Commun Biol 2022; 5:1106. [PMID: 36261617 PMCID: PMC9581958 DOI: 10.1038/s42003-022-04083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Large-scale transcriptome analysis can provide a systems-level understanding of biological processes. To accelerate functional genomic studies in chickpea, we perform a comprehensive transcriptome analysis to generate full-length transcriptome and expression atlas of protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs) from 32 different tissues/organs via deep sequencing. The high-depth RNA-seq dataset reveal expression dynamics and tissue-specificity along with associated biological functions of PCGs and lncRNAs during development. The coexpression network analysis reveal modules associated with a particular tissue or a set of related tissues. The components of transcriptional regulatory networks (TRNs), including transcription factors, their cognate cis-regulatory motifs, and target PCGs/lncRNAs that determine developmental programs of different tissues/organs, are identified. Several candidate tissue-specific and abiotic stress-responsive transcripts associated with quantitative trait loci that determine important agronomic traits are also identified. These results provide an important resource to advance functional/translational genomic and genetic studies during chickpea development and environmental conditions. A full-length transcriptome and expression atlas of protein-coding genes and long non-coding RNAs is generated in chickpea. Components of transcriptional regulatory networks and candidate tissue-specific transcripts associated with quantitative trait loci are identified.
Collapse
|
6
|
Khemka N, Rajkumar MS, Garg R, Jain M. Genome-wide analysis suggests the potential role of lncRNAs during seed development and seed size/weight determination in chickpea. PLANTA 2022; 256:79. [PMID: 36094579 DOI: 10.1007/s00425-022-03986-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The integrated transcriptome data analyses suggested the plausible roles of lncRNAs during seed development in chickpea. The candidate lncRNAs associated with QTLs and those involved in miRNA-mediated seed size/weight determination in chickpea have been identified. Long non-coding RNAs (lncRNAs) are important regulators of various biological processes. Here, we identified lncRNAs at seven successive stages of seed development in small-seeded and large-seeded chickpea cultivars. In total, 4751 lncRNAs implicated in diverse biological processes were identified. Most of lncRNAs were conserved between the two cultivars, whereas only a few of them were conserved in other plants, suggesting their species-specificity. A large number of lncRNAs differentially expressed between the two chickpea cultivars associated with seed development-related processes were identified. The lncRNAs acting as precursors of miRNAs and those mimicking target protein-coding genes of miRNAs involved in seed size/weight determination, including HAIKU1, BIG SEEDS1, and SHB1, were also revealed. Further, lncRNAs located within seed size/weight associated quantitative trait loci were also detected. Overall, we present a comprehensive resource and identified candidate lncRNAs that may play important roles during seed development and seed size/weight determination in chickpea.
Collapse
Affiliation(s)
- Niraj Khemka
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohan Singh Rajkumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Zhao Z, Zang S, Zou W, Pan YB, Yao W, You C, Que Y. Long Non-Coding RNAs: New Players in Plants. Int J Mol Sci 2022; 23:ijms23169301. [PMID: 36012566 PMCID: PMC9409372 DOI: 10.3390/ijms23169301] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
During the process of growth and development, plants are prone to various biotic and abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses. lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt (nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new regulatory element, lncRNAs play a critical role in coping with environmental pressure during plant growth and development. This article presents a comprehensive review on the types of plant lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs in plant growth and development, and their response to biotic and abiotic stresses. We conclude with a discussion on future direction for the elaboration of the function and mechanism of lncRNAs.
Collapse
Affiliation(s)
- Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- Sugarcane Research Unit, USDA-ARS, Houma, LA 70360, USA
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China
| | - Cuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| |
Collapse
|
8
|
Zhang Y, Li H, Yang X, Chen J, Shi T. Expression rewiring and methylation of non-coding RNAs involved in rhizome phenotypic variations of lotus ecotypes. Comput Struct Biotechnol J 2022; 20:2848-2860. [PMID: 35765649 PMCID: PMC9193371 DOI: 10.1016/j.csbj.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, emerge as crucial components for gene regulation. Nelumbo nucifera (lotus), a horticulturally important plant, differentiates into a temperate ecotype of enlarged rhizomes and a tropical ecotype of thin rhizomes. Nevertheless, whether and how ncRNAs can be rewired in expression and differentially methylated contributing to adaptive divergence of this storage organ in lotus ecotypes is unclear. Herein, we study the expression behaviors and DNA methylation patterns of ncRNAs in temperate and tropical lotus rhizomes. By whole transcriptome sequencing, we found both mRNAs and lncRNAs have divergent expression patterns between ecotypes, whereas miRNAs and circRNAs tended to be accession-specific or noisier in expression. The differentially expressed ncRNAs are involved in phenotypic differentiation of lotus rhizome between ecotypes, as the genes that interacted with them in the competing endogenous RNA network are enriched in functions including carbohydrate metabolism and plant hormone signaling, being critical to rhizome enlargement. Intriguingly, ncRNA-targeted genes are less prone to show positive selection or differential expression during ecotypic divergence due to constraints from ncRNA-mRNA interactions. The methylation levels of ncRNAs generally tend to be higher in temperate lotus than in tropical lotus, and differential methylation of lncRNAs also tends to have expression changes. Overall, our study of ncRNAs and their targets highlights the role of ncRNAs in rhizome growth variation between lotus ecotypes through expression rewiring and methylation modification.
Collapse
|
9
|
Zhao W, Meng X, Xu J, Liu Z, Hu Y, Li B, Chen J, Cao B. Integrated mRNA and Small RNA Sequencing Reveals microRNAs Associated With Xylem Development in Dalbergia odorifera. Front Genet 2022; 13:883422. [PMID: 35547261 PMCID: PMC9081728 DOI: 10.3389/fgene.2022.883422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dalbergia odorifera is a rare and precious rosewood specie, whose wood is a very high-quality material for valuable furniture and carving crafts. However, limited information is available about the process of wood formation in D. odorifera. To determine genes that might be closely associated with the xylem differentiation process, we analyzed the differentially expressed genes (DEGs) and microRNAs (miRNAs) from specific xylem tissues of D. odorifera by RNA sequencing (RNA-seq) and small RNA sequencing (small RNA-seq). In total, we obtained 134,221,955 clean reads from RNA-seq and 90,940,761 clean reads from small RNA-seq. By comparing the transition zone (Dotz) and sapwood (Dosw) samples, a total of 395 DEGs were identified. Further analysis revealed that DEGs encoded for WRKY transcription factors (eight genes), lignin synthesis (PER47, COMT, CCR2), cell wall composition (UXS2), gibberellin synthesis (KAO2, GA20OX1), jasmonic acid synthesis (OPR2, CYP74A), and synthesis of flavonoids (PAL2) and terpenoids (CYP71A1). Subsequently, a preliminary analysis by small RNA-seq showed that the expressions of 14 miRNAs (such as miR168a-5p, miR167f-5p, miR167h-5p, miR167e, miR390a, miR156g, novel_52, and novel_9) were significantly different between Dotz and Dosw. Further analysis revealed that the target genes of these differentially expressed miRNAs were enriched in the GO terms "amino acid binding," "cellulase activity," and "DNA beta-glucosyltransferase activity". Further, KEGG pathway annotation showed significant enrichment in "fatty acid elongation" and "biosynthesis of unsaturated fatty acids". These processes might be participating in the xylem differentiation of D. odorifera. Next, expression correlation analysis showed that nine differentially expressed miRNAs were significantly negatively associated with 21 target genes, which encoded for proteins such as pyrH, SPL6, SPL12, GCS1, and ARF8. Overall, this is the first study on miRNAs and their potential functions in the xylem development of D. odorifera, which provides a stepping stone for a detailed functional investigation of D. odorifera miRNAs.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiangxu Meng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jiahong Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Zijia Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yangyang Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Bingyu Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Bing Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
10
|
Abbas A, Shah AN, Tanveer M, Ahmed W, Shah AA, Fiaz S, Waqas MM, Ullah S. MiRNA fine tuning for crop improvement: using advance computational models and biotechnological tools. Mol Biol Rep 2022; 49:5437-5450. [PMID: 35182321 DOI: 10.1007/s11033-022-07231-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
MiRNAs modulate target genes expression at post-transcriptional levels, by reducing spatial abundance of mRNAs. MiRNAs regulats plant metabolism, and emerged as regulators of plant stress responses. Which make miRNAs promising candidates for fine tuning to affectively alter crop stress tolerance and other important traits. With recent advancements in the computational biology and biotechnology miRNAs structure and target prediction is possible resulting in pin point editing; miRNA modulation can be done by up or down regulating miRNAs using recently available biotechnological tools (CRISPR Cas9, TALENS and RNAi). In this review we have focused on miRNA biogenesis, miRNA roles in plant development, plant stress responses and roles in signaling pathways. Additionally we have discussed latest computational prediction models for miRNA to target gene interaction and biotechnological systems used recently for miRNA modulation. We have also highlighted setbacks and limitations in the way of miRNA modulation; providing entirely a new direction for improvement in plant genomics primarily focusing miRNAs.
Collapse
Affiliation(s)
- Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan.
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Waseem Ahmed
- Department of Horticulture, The University of Haripur, Hatatr Road, Haripur, 22620, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
11
|
Wu M, Liu H, Li B, Zhu T. Integrated analysis of mRNA-seq and miRNA-seq reveals the advantage of polyploid Solidago canadensis in sexual reproduction. BMC PLANT BIOLOGY 2021; 21:462. [PMID: 34635057 PMCID: PMC8504063 DOI: 10.1186/s12870-021-03240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The invasion of Solidago canadensis probably related to polyploidy, which may promotes its potential of sexual reproductive. S. canadensis as an invasive species which rapidly widespread through yield huge numbers of seed, but the mechanism remains unknown. To better understand the advantages of sexual reproduction in hexaploid S. canadensis, transcriptome and small RNA sequencing of diploid and hexaploid cytotypes in flower bud and fruit development stages were performed in this study. RESULTS The transcriptome analysis showed that in the flower bud stage, 29 DEGs were MADS-box related genes with 14 up-regulated and 15 down-regulated in hexaploid S. canadensis; 12 SPL genes were detected differentially expressed with 5 up-regulated and 7 down-regulated. In the fruit development stage, 26 MADS-box related genes with 20 up-regulated and 6 down-regulated in hexaploid S. canadensis; 5 SPL genes were all up-regulated; 28 seed storage protein related genes with 18 were up-regulated and 10 down-regulated. The weighted gene co-expression network analysis (WGCNA) identified 19 modules which consisted of co-expressed DEGs with functions such as sexual reproduction, secondary metabolism and transcription factors. Furthermore, we discovered 326 miRNAs with 67 known miRNAs and 259 novel miRNAs. Some of miRNAs, such as miR156, miR156a and miR156f, which target the sexual reproduction related genes. CONCLUSION Our study provides a global view of the advantages of sexual reproduction in hexaploid S. canadensis based on the molecular mechanisms, which may promote hexaploid S. canadensis owing higher yield and fruit quality in the process of sexual reproduction and higher germination rate of seeds, and finally conductive to diffusion, faster propagation process and enhanced invasiveness.
Collapse
Affiliation(s)
- Miao Wu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China.
| | - Huiyuan Liu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China
| | - Bingbing Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China
| | - Tao Zhu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China
| |
Collapse
|
12
|
Chand Jha U, Nayyar H, Mantri N, Siddique KHM. Non-Coding RNAs in Legumes: Their Emerging Roles in Regulating Biotic/Abiotic Stress Responses and Plant Growth and Development. Cells 2021; 10:cells10071674. [PMID: 34359842 PMCID: PMC8306516 DOI: 10.3390/cells10071674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
Noncoding RNAs, including microRNAs (miRNAs), small interference RNAs (siRNAs), circular RNA (circRNA), and long noncoding RNAs (lncRNAs), control gene expression at the transcription, post-transcription, and translation levels. Apart from protein-coding genes, accumulating evidence supports ncRNAs playing a critical role in shaping plant growth and development and biotic and abiotic stress responses in various species, including legume crops. Noncoding RNAs (ncRNAs) interact with DNA, RNA, and proteins, modulating their target genes. However, the regulatory mechanisms controlling these cellular processes are not well understood. Here, we discuss the features of various ncRNAs, including their emerging role in contributing to biotic/abiotic stress response and plant growth and development, in addition to the molecular mechanisms involved, focusing on legume crops. Unravelling the underlying molecular mechanisms and functional implications of ncRNAs will enhance our understanding of the coordinated regulation of plant defences against various biotic and abiotic stresses and for key growth and development processes to better design various legume crops for global food security.
Collapse
MESH Headings
- Fabaceae/genetics
- Fabaceae/growth & development
- Fabaceae/metabolism
- Food Security
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Humans
- MicroRNAs/classification
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Organ Specificity
- Protein Biosynthesis
- RNA, Circular/classification
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/classification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Plant/classification
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/classification
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Species Specificity
- Stress, Physiological/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR—Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
- Correspondence: (U.C.J.); (K.H.M.S.)
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 160014, India;
| | - Nitin Mantri
- School of Science, RMIT University, Melbourne 3083, Australia;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth 6001, Australia
- Correspondence: (U.C.J.); (K.H.M.S.)
| |
Collapse
|
13
|
Chen Q, Liu K, Yu R, Zhou B, Huang P, Cao Z, Zhou Y, Wang J. From "Dark Matter" to "Star": Insight Into the Regulation Mechanisms of Plant Functional Long Non-Coding RNAs. FRONTIERS IN PLANT SCIENCE 2021; 12:650926. [PMID: 34163498 PMCID: PMC8215657 DOI: 10.3389/fpls.2021.650926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/05/2021] [Indexed: 05/27/2023]
Abstract
Long non-coding RNAs (lncRNAs) play a vital role in a variety of biological functions in plant growth and development. In this study, we provided an overview of the molecular mechanisms of lncRNAs in interacting with other biomolecules with an emphasis on those lncRNAs validated only by low-throughput experiments. LncRNAs function through playing multiple roles, including sponger for sequestering RNA or DNA, guider or decoy for recruiting or hijacking transcription factors or peptides, and scaffold for binding with chromatin modification complexes, as well as precursor of microRNAs or small interfering RNAs. These regulatory roles have been validated in several plant species with a comprehensive list of 73 lncRNA-molecule interaction pairs in 16 plant species found so far, suggesting their commonality in the plant kingdom. Such initial findings of a small number of functional plant lncRNAs represent the beginning of what is to come as lncRNAs with unknown functions were found in orders of magnitude more than proteins.
Collapse
Affiliation(s)
- Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Kui Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Ru Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Bailing Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Pingping Huang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Yaoqi Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| |
Collapse
|
14
|
Yan X, Ma L, Yang M. Identification and characterization of long non-coding RNA (lncRNA) in the developing seeds of Jatropha curcas. Sci Rep 2020; 10:10395. [PMID: 32587349 PMCID: PMC7316758 DOI: 10.1038/s41598-020-67410-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in plant development. However, the information of lncRNAs in Jatropha curcas remains largely unexplored. Thus, an attempt has been made in J. curcas to identify 1,850 lncRNAs based on deep sequencing of developing seeds at three typical stages. About ten percent lncRNAs (196 lncRNAs) were differentially expressed lncRNAs during seed developing process. Together with reverse transcription quantitative real-time PCR, the lncRNA expression analyses revealed the stage-specific expression patterns of some novel lncRNAs in J. curcas. The target genes of lncRNAs were annotated for their roles in various biological processes such as gene expression, metabolism, and cell growth. Besides, 10 lncRNAs were identified as the precursors of microRNAs and 26 lncRNAs were predicted to be the targets of Jatropha miRNAs. A total of 31 key lncRNAs play critical roles in the seed developing process in the context of cell growth and development, lipid metabolism, and seed maturation. Our study provides the first systematic study of lncRNAs in the developing seeds of J. curcas and facilitates the functional research of plant lncRNAs and the regulation of seed development.
Collapse
Affiliation(s)
- Xihuan Yan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.,Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Lanqing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China. .,Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| | - MingFeng Yang
- Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| |
Collapse
|