1
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
2
|
Bashkirtseva I, Ryashko L. How noise can generate calcium spike-type oscillations in deterministic equilibrium modes. Phys Rev E 2022; 105:054404. [PMID: 35706230 DOI: 10.1103/physreve.105.054404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Stochastic excitability of spiking oscillatory regimes in the calcium kinetics is studied on the basis of the Li-Rinzel conceptual model. The probabilistic mechanisms of the noise-induced generation of large-amplitude oscillations in parametric zones, where the original deterministic model has only stable equilibria, are investigated numerically and analytically. A parametric statistical description of interspike intervals is curried out and the phenomenon of coherence resonance is discussed. For the analytical study of the stochastic excitement, the confidence domain method using a stochastic sensitivity technique is applied. In this analysis, a key role of mutual arrangement of the confidence ellipses and separatrices detaching the sub- and supercritical regions is demonstrated. It is shown that in the Li-Rinzel model such separatrices are the stable manifolds of the saddle equilibria and the transient semiattractors.
Collapse
Affiliation(s)
- Irina Bashkirtseva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, Russia
| | - Lev Ryashko
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, Russia
| |
Collapse
|
3
|
Palabas T, Longtin A, Ghosh D, Uzuntarla M. Controlling the spontaneous firing behavior of a neuron with astrocyte. CHAOS (WOODBURY, N.Y.) 2022; 32:051101. [PMID: 35649970 DOI: 10.1063/5.0093234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Mounting evidence in recent years suggests that astrocytes, a sub-type of glial cells, not only serve metabolic and structural support for neurons and synapses but also play critical roles in the regulation of proper functioning of the nervous system. In this work, we investigate the effect of astrocytes on the spontaneous firing activity of a neuron through a combined model that includes a neuron-astrocyte pair. First, we show that an astrocyte may provide a kind of multistability in neuron dynamics by inducing different firing modes such as random and bursty spiking. Then, we identify the underlying mechanism of this behavior and search for the astrocytic factors that may have regulatory roles in different firing regimes. More specifically, we explore how an astrocyte can participate in the occurrence and control of spontaneous irregular spiking activity of a neuron in random spiking mode. Additionally, we systematically investigate the bursty firing regime dynamics of the neuron under the variation of biophysical facts related to the intracellular environment of the astrocyte. It is found that an astrocyte coupled to a neuron can provide a control mechanism for both spontaneous firing irregularity and burst firing statistics, i.e., burst regularity and size.
Collapse
Affiliation(s)
- Tugba Palabas
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey
| | - Andre Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Muhammet Uzuntarla
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| |
Collapse
|
4
|
Ristič D, Gosak M. Interlayer Connectivity Affects the Coherence Resonance and Population Activity Patterns in Two-Layered Networks of Excitatory and Inhibitory Neurons. Front Comput Neurosci 2022; 16:885720. [PMID: 35521427 PMCID: PMC9062746 DOI: 10.3389/fncom.2022.885720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The firing patterns of neuronal populations often exhibit emergent collective oscillations, which can display substantial regularity even though the dynamics of individual elements is very stochastic. One of the many phenomena that is often studied in this context is coherence resonance, where additional noise leads to improved regularity of spiking activity in neurons. In this work, we investigate how the coherence resonance phenomenon manifests itself in populations of excitatory and inhibitory neurons. In our simulations, we use the coupled FitzHugh-Nagumo oscillators in the excitable regime and in the presence of neuronal noise. Formally, our model is based on the concept of a two-layered network, where one layer contains inhibitory neurons, the other excitatory neurons, and the interlayer connections represent heterotypic interactions. The neuronal activity is simulated in realistic coupling schemes in which neurons within each layer are connected with undirected connections, whereas neurons of different types are connected with directed interlayer connections. In this setting, we investigate how different neurophysiological determinants affect the coherence resonance. Specifically, we focus on the proportion of inhibitory neurons, the proportion of excitatory interlayer axons, and the architecture of interlayer connections between inhibitory and excitatory neurons. Our results reveal that the regularity of simulated neural activity can be increased by a stronger damping of the excitatory layer. This can be accomplished with a higher proportion of inhibitory neurons, a higher fraction of inhibitory interlayer axons, a stronger coupling between inhibitory axons, or by a heterogeneous configuration of interlayer connections. Our approach of modeling multilayered neuronal networks in combination with stochastic dynamics offers a novel perspective on how the neural architecture can affect neural information processing and provide possible applications in designing networks of artificial neural circuits to optimize their function via noise-induced phenomena.
Collapse
Affiliation(s)
- David Ristič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
5
|
Pitsik EN, Frolov NS, Shusharina N, Hramov AE. Age-Related Changes in Functional Connectivity during the Sensorimotor Integration Detected by Artificial Neural Network. SENSORS 2022; 22:s22072537. [PMID: 35408153 PMCID: PMC9003057 DOI: 10.3390/s22072537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023]
Abstract
Large-scale functional connectivity is an important indicator of the brain’s normal functioning. The abnormalities in the connectivity pattern can be used as a diagnostic tool to detect various neurological disorders. The present paper describes the functional connectivity assessment based on artificial intelligence to reveal age-related changes in neural response in a simple motor execution task. Twenty subjects of two age groups performed repetitive motor tasks on command, while the whole-scalp EEG was recorded. We applied the model based on the feed-forward multilayer perceptron to detect functional relationships between five groups of sensors located over the frontal, parietal, left, right, and middle motor cortex. Functional dependence was evaluated with the predicted and original time series coefficient of determination. Then, we applied statistical analysis to highlight the significant features of the functional connectivity network assessed by our model. Our findings revealed the connectivity pattern is consistent with modern ideas of the healthy aging effect on neural activation. Elderly adults demonstrate a pronounced activation of the whole-brain theta-band network and decreased activation of frontal–parietal and motor areas of the mu-band. Between-subject analysis revealed a strengthening of inter-areal task-relevant links in elderly adults. These findings can be interpreted as an increased cognitive demand in elderly adults to perform simple motor tasks with the dominant hand, induced by age-related working memory decline.
Collapse
Affiliation(s)
- Elena N. Pitsik
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Kazan 420500, Russia
| | - Nikita S. Frolov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Kazan 420500, Russia
| | - Natalia Shusharina
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
| | - Alexander E. Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Kazan 420500, Russia
- Correspondence:
| |
Collapse
|
6
|
Li L, Zhao Z. White-noise-induced double coherence resonances in reduced Hodgkin-Huxley neuron model near subcritical Hopf bifurcation. Phys Rev E 2022; 105:034408. [PMID: 35428043 DOI: 10.1103/physreve.105.034408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/04/2022] [Indexed: 11/07/2022]
Abstract
Coherence resonance (CR) describes a counterintuitive phenomenon in which the optimal oscillatory responses in nonlinear systems are shaped by a suitable noise amplitude. This phenomenon has been observed in neural systems. In this research, the generation of double coherence resonances (DCRs) due to white noise is investigated in a three-dimensional reduced Hodgkin-Huxley neuron model with multiple-timescale feature. We show that additive white noise can induce DCRs from the resting state near a subcritical Hopf bifurcation. The appearance of DCRs is related to the changes of the firing pattern aroused by the increases of the noise amplitude. The underlying dynamical mechanisms for the appearance of the DCRs and the changes of the firing pattern are interpreted using the phase space analysis and the dynamics of the stable focus-node near the subcritical Hopf bifurcation. We find that the multiple-timescale dynamics is essential for generating the DCRs and different firing patterns. The results not only present a case in which noise can induce DCRs near a Hopf bifurcation but also provide its dynamical mechanism, which enriches the phenomena in nonlinear dynamics and provides further understanding on the roles of noise in neural systems with multiple-timescale feature.
Collapse
Affiliation(s)
- Li Li
- Guangdong Key Laboratory of Modern Control Technology, Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhiguo Zhao
- School of Science, Henan Institute of Technology, Xinxiang 453003, China
| |
Collapse
|
7
|
Bashkirtseva I, Slepukhina E. Variability of complex oscillatory regimes in the stochastic model of cold-flame combustion of a hydrocarbon mixture. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200314. [PMID: 34974724 DOI: 10.1098/rsta.2020.0314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 06/14/2023]
Abstract
Processes of the cold-flame combustion of a mixture of two hydrocarbons are studied on the base of a three-dimensional nonlinear dynamical model. Bifurcation analysis of the deterministic model reveals mono- and bistability parameter zones with equilibrium and oscillatory attractors. For this model, effects of random disturbances in the bistability parameter zone are studied. We show that random forcing causes transitions between coexisting stable equilibria and limit cycles with the formation of complex stochastic mixed-mode oscillations. Properties of these oscillatory regimes are studied by means of statistics of interspike intervals. A phenomenon of anti-coherence resonance is discussed. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.
Collapse
|
8
|
Arousal Fluctuations Govern Oscillatory Transitions Between Dominant [Formula: see text] and [Formula: see text] Occipital Activity During Eyes Open/Closed Conditions. Brain Topogr 2021; 35:108-120. [PMID: 34160731 DOI: 10.1007/s10548-021-00855-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Arousal results in widespread activation of brain areas to increase their response in task and behavior relevant ways. Mediated by the Ascending Reticular Arousal System (ARAS), arousal-dependent inputs interact with neural circuitry to shape their dynamics. In the occipital cortex, such inputs may trigger shifts between dominant oscillations, where [Formula: see text] activity is replaced by [Formula: see text] activity, or vice versa. A salient example of this are spectral power alternations observed while eyes are opened and/or closed. These transitions closely follow fluctuations in arousal, suggesting a common origin. To better understand the mechanisms at play, we developed and analyzed a computational model composed of two modules: a thalamocortical feedback circuit coupled with a superficial cortical network. Upon activation by noise-like inputs originating from the ARAS, our model is able to demonstrate that noise-driven non-linear interactions mediate transitions in dominant peak frequency, resulting in the simultaneous suppression of [Formula: see text] limit cycle activity and the emergence of [Formula: see text] oscillations through coherence resonance. Reduction in input provoked the reverse effect - leading to anticorrelated transitions between [Formula: see text] and [Formula: see text] power. Taken together, these results shed a new light on how arousal shapes oscillatory brain activity.
Collapse
|
9
|
Baspinar E, Schülen L, Olmi S, Zakharova A. Coherence resonance in neuronal populations: Mean-field versus network model. Phys Rev E 2021; 103:032308. [PMID: 33862689 DOI: 10.1103/physreve.103.032308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/22/2021] [Indexed: 01/17/2023]
Abstract
The counterintuitive phenomenon of coherence resonance describes a nonmonotonic behavior of the regularity of noise-induced oscillations in the excitable regime, leading to an optimal response in terms of regularity of the excited oscillations for an intermediate noise intensity. We study this phenomenon in populations of FitzHugh-Nagumo (FHN) neurons with different coupling architectures. For networks of FHN systems in an excitable regime, coherence resonance has been previously analyzed numerically. Here we focus on an analytical approach studying the mean-field limits of the globally and locally coupled populations. The mean-field limit refers to an averaged behavior of a complex network as the number of elements goes to infinity. We apply the mean-field approach to the globally coupled FHN network. Further, we derive a mean-field limit approximating the locally coupled FHN network with low noise intensities. We study the effects of the coupling strength and noise intensity on coherence resonance for both the network and the mean-field models. We compare the results of the mean-field and network frameworks and find good agreement in the globally coupled case, where the correspondence between the two approaches is sufficiently good to capture the emergence of coherence resonance, as well as of anticoherence resonance.
Collapse
Affiliation(s)
- Emre Baspinar
- Inria Sophia Antipolis Méditerranée Research Centre, 2004 Route des Lucioles, 06902 Valbonne, France
| | - Leonhard Schülen
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Simona Olmi
- Inria Sophia Antipolis Méditerranée Research Centre, 2004 Route des Lucioles, 06902 Valbonne, France.,CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi complessi, 50019, Sesto Fiorentino, Italy.,Joint Senior Authorship
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.,Joint Senior Authorship
| |
Collapse
|
10
|
Pal K, Ghosh D, Gangopadhyay G. Synchronization and metabolic energy consumption in stochastic Hodgkin-Huxley neurons: Patch size and drug blockers. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Chholak P, Maksimenko VA, Hramov AE, Pisarchik AN. Voluntary and Involuntary Attention in Bistable Visual Perception: A MEG Study. Front Hum Neurosci 2020; 14:597895. [PMID: 33414711 PMCID: PMC7782248 DOI: 10.3389/fnhum.2020.597895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
In this study, voluntary and involuntary visual attention focused on different interpretations of a bistable image, were investigated using magnetoencephalography (MEG). A Necker cube with sinusoidally modulated pixels' intensity in the front and rear faces with frequencies 6.67 Hz (60/9) and 8.57 Hz (60/7), respectively, was presented to 12 healthy volunteers, who interpreted the cube as either left- or right-oriented. The tags of these frequencies and their second harmonics were identified in the average Fourier spectra of the MEG data recorded from the visual cortex. In the first part of the experiment, the subjects were asked to voluntarily control their attention by interpreting the cube orientation as either being on the left or right. Accordingly, we observed the dominance of the corresponding spectral component, and voluntary attention performance was measured. In the second part of the experiment, the subjects were asked to focus their gaze on a red marker at the center of the cube image without putting forth effort in its interpretation. The alternation of the dominant spectral energies at the second harmonics of the stimulation frequencies was treated as changes in the cube orientation. Based on the results of the first experimental stage and using a wavelet analysis, we developed a method which allowed us to identify the currently perceived cube orientation. Finally, we characterized involuntary attention using the distribution of dominance times when focusing attention on one of the cube orientations, which was related to voluntary attention performance and brain noise. In particular, we confirmed our hypothesis that higher attention performance is associated with stronger brain noise.
Collapse
Affiliation(s)
- Parth Chholak
- Center for Biomedical Technology, Technical University of Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Vladimir A. Maksimenko
- Laboratory of Neuroscience and Cognitive Technology, Center for Technologies in Robotics and Mechatronics Component, Innolpolis University, Innopolis, Russia
| | - Alexander E. Hramov
- Laboratory of Neuroscience and Cognitive Technology, Center for Technologies in Robotics and Mechatronics Component, Innolpolis University, Innopolis, Russia
- Department of Automation, Control and Mechatronics, Saratov State Medical University, Saratov, Russia
| | - Alexander N. Pisarchik
- Center for Biomedical Technology, Technical University of Madrid, Pozuelo de Alarcón, Madrid, Spain
- Laboratory of Neuroscience and Cognitive Technology, Center for Technologies in Robotics and Mechatronics Component, Innolpolis University, Innopolis, Russia
| |
Collapse
|
12
|
Neurostimulation stabilizes spiking neural networks by disrupting seizure-like oscillatory transitions. Sci Rep 2020; 10:15408. [PMID: 32958802 PMCID: PMC7506027 DOI: 10.1038/s41598-020-72335-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
An improved understanding of the mechanisms underlying neuromodulatory approaches to mitigate seizure onset is needed to identify clinical targets for the treatment of epilepsy. Using a Wilson–Cowan-motivated network of inhibitory and excitatory populations, we examined the role played by intrinsic and extrinsic stimuli on the network’s predisposition to sudden transitions into oscillatory dynamics, similar to the transition to the seizure state. Our joint computational and mathematical analyses revealed that such stimuli, be they noisy or periodic in nature, exert a stabilizing influence on network responses, disrupting the development of such oscillations. Based on a combination of numerical simulations and mean-field analyses, our results suggest that high variance and/or high frequency stimulation waveforms can prevent multi-stability, a mathematical harbinger of sudden changes in network dynamics. By tuning the neurons’ responses to input, stimuli stabilize network dynamics away from these transitions. Furthermore, our research shows that such stabilization of neural activity occurs through a selective recruitment of inhibitory cells, providing a theoretical undergird for the known key role these cells play in both the healthy and diseased brain. Taken together, these findings provide new vistas on neuromodulatory approaches to stabilize neural microcircuit activity.
Collapse
|