1
|
Freeland LV, Emmerson MG, Vasas V, Gomes J, Versace E. Assessing preferences for adult versus juvenile features in young animals: Newly hatched chicks spontaneously approach red and large stimuli. Learn Behav 2024:10.3758/s13420-024-00638-z. [PMID: 39150659 DOI: 10.3758/s13420-024-00638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Young precocial birds benefit from staying close to both their mother and their siblings, while prioritising adults, which provide better care. Which features of the stimuli are used by young birds to prioritise approach and eventually attachment to adults over siblings is unknown. We started to address this question in newly hatched domestic chicks (Gallus gallus), focusing on their spontaneous preferences for visual features that systematically vary between adult and juvenile chickens, and that had previously been identified as attractive: size (larger in adults than in juveniles) and colour (darker and redder in adults than in juveniles). Overall, chicks at their first visual experience, that had never seen a conspecific beforehand, were most attracted to the red and large stimuli (two adult features) and spent more time in close proximity with red stimuli than with yellow stimuli. When tested with red large versus small objects (Exp. 1), chicks preferred the large shape. When tested with yellow large and small objects (Exp. 2), chicks did not show a preference. Chicks had a stronger preference for large red stimuli (vs. small yellow objects) than for small red stimuli (vs. a large yellow object) (Exp. 3). These results suggest that the combination of size and colour form the predisposition that helps chicks to spontaneously discriminate between adult and juvenile features from the first stages of life, in the absence of previous experience, exhibiting a preference to approach stimuli with features associated with the presence of adult conspecifics.
Collapse
Affiliation(s)
- Laura V Freeland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Michael G Emmerson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Vera Vasas
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Josephine Gomes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Elisabetta Versace
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Matsushima T, Izumi T, Vallortigara G. The domestic chick as an animal model of autism spectrum disorder: building adaptive social perceptions through prenatally formed predispositions. Front Neurosci 2024; 18:1279947. [PMID: 38356650 PMCID: PMC10864568 DOI: 10.3389/fnins.2024.1279947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Equipped with an early social predisposition immediately post-birth, humans typically form associations with mothers and other family members through exposure learning, canalized by a prenatally formed predisposition of visual preference to biological motion, face configuration, and other cues of animacy. If impaired, reduced preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided canalization. Despite being taxonomically distant, domestic chicks could also follow a homologous developmental trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences similar to those of humans, thereby suggesting that chicks are a valid animal model of ASD. In addition to the phenotypic similarities in predisposition with human newborns, accumulating evidence on the responsible molecular mechanisms suggests the construct validity of the chick model. Considering the recent progress in the evo-devo studies in vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases in humans.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Takeshi Izumi
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
| | | |
Collapse
|
3
|
De Roni P, Geraci A, Simion F, Regolin L. Sensitivity to the role of an animated agent from observed interactions in newborn chicks ( Gallus gallus). ROYAL SOCIETY OPEN SCIENCE 2023; 10:210020. [PMID: 37885990 PMCID: PMC10598414 DOI: 10.1098/rsos.210020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Few month old human infants are able to detect the social roles of artificial agents and consistently choose the object behaving as 'approacher' rather than 'repulser'. This preference has been considered evidence of a pre-linguistic and pre-cultural origin of the social mind. Similar preferences have not been described in other species, though comparative data could help clarify the nature of this phenomenon and its evolutionary origin. In this study, we investigated sensitivity to the social role of an artificial agent in domestic chicks. Birds offer an excellent model to study the evolutionary roots of cognitive abilities, since they separated from mammals over 300 Ma. Moreover, the investigation of newly hatched chicks allows control for previous experience. After being exposed to computer-presented animations depicting an interaction among two agents, chicks underwent a free choice test among those same objects. While no initial evidence of a clear preference emerged from the planned analysis, chicks in the experimental condition showed a preference for the 'approacher' when controlling for side bias, mirroring human infants behaviour. This suggests the existence of an early ability to discriminate agents from their interactions, independent from any social experience.
Collapse
Affiliation(s)
- P. De Roni
- Department of Developmental Psychology and Socialisation, University of Padova, 35131 Padua, Italy
| | - A. Geraci
- Department of Social and Educational Sciences of the Mediterranean Area, University for Foreigners of Reggio Calabria, 89125 Reggio Calabria, Italy
| | - F. Simion
- Department of Developmental Psychology and Socialisation, University of Padova, 35131 Padua, Italy
| | - L. Regolin
- Department of General Psychology, University of Padova, 35131 Padua, Italy
| |
Collapse
|
4
|
Han Y, Han W, Li L, Zhang T, Wang Y. Identifying critical kinematic features of animate motion and contribution to animacy perception. iScience 2023; 26:107658. [PMID: 37664633 PMCID: PMC10472316 DOI: 10.1016/j.isci.2023.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Humans can distinguish flying birds from drones based solely on motion features when no image information is available. However, it remains unclear which motion features of animate motion induce our animacy perception. To address this, we first analyzed the differences in centroid motion between birds and drones, and discovered that birds exhibit greater acceleration, angular speed, and trajectory fluctuations. We further determined the order of their importance in evoking animacy perception was trajectory fluctuations, acceleration, and speed. More interestingly, people judge whether a moving object is alive using a feature-matching strategy, implying that animacy perception is induced in a key feature-triggered way rather than relying on the accumulation of evidence. Our findings not only shed light on the critical motion features that induce animacy perception and their relative contributions but also have important implications for developing target classification algorithms based on motion features.
Collapse
Affiliation(s)
- Yifei Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Wenhao Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Liang Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Torabian S, Grossman ED. When shapes are more than shapes: perceptual, developmental, and neurophysiological basis for attributions of animacy and theory of mind. Front Psychol 2023; 14:1168739. [PMID: 37744598 PMCID: PMC10513434 DOI: 10.3389/fpsyg.2023.1168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
Among a variety of entities in their environment, what do humans consider alive or animate and how does this attribution of animacy promote development of more abstract levels of mentalizing? By decontextualizing the environment of bodily features, we review how physical movements give rise to perceived animacy in Heider-Simmel style animations. We discuss the developmental course of how perceived animacy shapes our interpretation of the social world, and specifically discuss when and how children transition from perceiving actions as goal-directed to attributing behaviors to unobservable mental states. This transition from a teleological stance, asserting a goal-oriented interpretation to an agent's actions, to a mentalistic stance allows older children to reason about more complex actions guided by hidden beliefs. The acquisition of these more complex cognitive behaviors happens developmentally at the same time neural systems for social cognition are coming online in young children. We review perceptual, developmental, and neural evidence to identify the joint cognitive and neural changes associated with when children begin to mentalize and how this ability is instantiated in the brain.
Collapse
Affiliation(s)
- Sajjad Torabian
- Visual Perception and Neuroimaging Lab, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
6
|
Loconsole M, Stancher G, Versace E. Crossmodal association between visual and acoustic cues in a tortoise ( Testudo hermanni). Biol Lett 2023; 19:20230265. [PMID: 37465911 PMCID: PMC10354690 DOI: 10.1098/rsbl.2023.0265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Humans spontaneously match information coming from different senses, in what we call crossmodal associations. For instance, high-pitched sounds are preferentially associated with small objects, and low-pitched sounds with larger ones. Although previous studies reported crossmodal associations in mammalian species, evidence for other taxa is scarce, hindering an evolutionary understanding of this phenomenon. Here, we provide evidence of pitch-size correspondence in a reptile, the tortoise Testudo hermanni. Tortoises showed a spontaneous preference to associate a small disc (i.e. visual information about size) with a high-pitch sound (i.e. auditory information) and a larger disc to a low-pitched sound. These results suggest that crossmodal associations may be an evolutionary ancient phenomenon, potentially an organizing principle of the vertebrate brain.
Collapse
Affiliation(s)
- Maria Loconsole
- School of Biological and Behavioural Sciences, Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Gionata Stancher
- Rovereto Civic Museum Foundation, Borgo Santa Caterina 41, 38068 Rovereto, Trentino, Italy
| | - Elisabetta Versace
- School of Biological and Behavioural Sciences, Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
7
|
Liste G, Estevez I. Phenotype alteration causes long-term changes to the social strategies of victimised birds. Sci Rep 2023; 13:2421. [PMID: 36765194 PMCID: PMC9918478 DOI: 10.1038/s41598-023-29577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Phenotype alterations can occur naturally during the life span of the domestic fowl. These alterations increase the risk to become a target of aggression and may cause a severe impact on the welfare of affected birds. We analysed the behavioural consequences of sequential phenotype alterations and their long-term effects within stable social groups of adult birds differing in group size. Phenotypically homogeneous groups, with 100% or 0% marked individuals, and heterogeneous groups, with 70%, 50% or 30% marked birds, were housed at constant density in groups of 10, 20 or 40. We applied sequential phenotype alterations to homogeneous groups (by marking or unmarking birds) and compared their behavioural response to heterogeneous groups considered controls. Results show that aggression was greatly affected by phenotype alteration but, unexpectedly, group size did not play any relevant role modulating social responses. Aggression was directed towards the first altered birds and was significantly higher than in control groups. Long term effects were detected, as victimized individuals failed to engage in aggression at any time and adapted their behaviour to minimize aggressive encounters (e.g. high perch use). Therefore, we provide evidence of long-lasting submissive strategies in stable groups of adult domestic fowl, highlighting the relevance of phenotype alteration on the social dynamics of affected birds. Phenotype alterations could help explain much of the targeted aggression observed in producing flocks which severely affects animal welfare.
Collapse
Affiliation(s)
- Guiomar Liste
- Neiker, Animal Production Department, P.O. Box 46, 01080, Vitoria, Spain.
| | - Inma Estevez
- Neiker, Animal Production Department, P.O. Box 46, 01080, Vitoria, Spain.
- Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5 Plaza Bizkaia, 48011, Bilbao, Spain.
| |
Collapse
|
8
|
Lemaire BS, Vallortigara G. Life is in motion (through a chick's eye). Anim Cogn 2023; 26:129-140. [PMID: 36222937 PMCID: PMC9877072 DOI: 10.1007/s10071-022-01703-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023]
Abstract
Cognitive scientists, social psychologists, computer scientists, neuroscientists, ethologists and many others have all wondered how brains detect and interpret the motion of living organisms. It appears that specific cues, incorporated into our brains by natural selection, serve to signal the presence of living organisms. A simple geometric figure such as a triangle put in motion with specific kinematic rules can look alive, and it can even seem to have intentions and goals. In this article, we survey decades of parallel investigations on the motion cues that drive animacy perception-the sensation that something is alive-in non-human animals, especially in precocial species, such as the domestic chick, to identify inborn biological predispositions. At the same time, we highlight the relevance of these studies for an understanding of human typical and atypical cognitive development.
Collapse
Affiliation(s)
- Bastien S Lemaire
- Center for Mind and Brain Sciences, University of Trento, Trento, Italy.
| | | |
Collapse
|
9
|
Lemaire BS, Rosa-Salva O, Fraja M, Lorenzi E, Vallortigara G. Spontaneous preference for unpredictability in the temporal contingencies between agents' motion in naive domestic chicks. Proc Biol Sci 2022; 289:20221622. [PMID: 36350221 PMCID: PMC9653227 DOI: 10.1098/rspb.2022.1622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 08/24/2023] Open
Abstract
The ability to recognize animate agents based on their motion has been investigated in humans and animals alike. When the movements of multiple objects are interdependent, humans perceive the presence of social interactions and goal-directed behaviours. Here, we investigated how visually naive domestic chicks respond to agents whose motion was reciprocally contingent in space and time (i.e. the time and direction of motion of one object can be predicted from the time and direction of motion of another object). We presented a 'social aggregation' stimulus, in which three smaller discs repeatedly converged towards a bigger disc, moving in a manner resembling a mother hen and chicks (versus a control stimulus lacking such interactions). Remarkably, chicks preferred stimuli in which the timing of the motion of one object could not be predicted by that of other objects. This is the first demonstration of a sensitivity to the temporal relationships between the motion of different objects in naive animals, a trait that could be at the basis of the development of the perception of social interaction and goal-directed behaviours.
Collapse
Affiliation(s)
- Bastien S. Lemaire
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Margherita Fraja
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| |
Collapse
|
10
|
Processing Individually Distinctive Schematic-Faces Supports Proto-Arithmetical Counting in the Young Domestic Chicken. Animals (Basel) 2022; 12:ani12182322. [PMID: 36139181 PMCID: PMC9494947 DOI: 10.3390/ani12182322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Baby chicks, like infants and other animals, are unable to distinguish 3 vs. 4 identical objects. Because infants and chicks discriminate among larger sets (e.g., 4 vs. 12; 6 vs. 9), the 3 vs. 4 limitation has been considered the key-signature of the counting cognitive system that processes small numerosities. Here, we explored if the experience with different bird-like faces as objects—which naturally trigger chicks’ attention—could make the 3 vs. 4 task easier. Chicks reared with seven different faces, characterized by two “eyes” and a “beak” as features, succeeded in the 1 + 1 + 1 vs. 1 + 1 + 1 + 1 operation (Exp. 1); while birds, reared and tested with seven identical copies of a same face, failed (Exp. 2). Processing different individuals, and not experience with copies of one single individual per se, increased proto-arithmetic performance. Surprisingly, chicks, after being reared with seven identical faces, succeeded in the proto-arithmetic task when presented with seven completely novel faces (Exp. 3). On the contrary, similar experience with seven identical and featureless faces did not allow discrimination of novel faces (Exp. 4). Experience of one face probably helps to focus on the facial features which are later used to individually process new faces. In turn, individual processing enhances proto-arithmetical calculation. Abstract A key signature of small-number processing is the difficulty in discriminating between three and four objects, as reported in infants and animals. Five-day-old chicks overcome this limit if individually distinctive features characterize each object. In this study, we have investigated whether processing individually different face-like objects can also support discrimination between three and four objects. Chicks were reared with seven face-like stimuli and tested in the proto-arithmetic comparison 1 + 1 + 1 vs. 1 + 1 + 1 + 1. Birds reared and tested with all different faces discriminated and approached the larger group (Exp. 1), whereas new birds reared and tested with seven identical copies of one same face failed (Exp. 2). The presence at test of individually different faces allowed discrimination even when chicks were reared with copies of one face (Exp. 3). To clarify the role of the previous experience of at least one specific arrangement of facial features, in Experiment 4, featureless faces were employed during rearing. During testing, chicks were unable to discriminate between three and four individually distinct faces. Results highlight the importance of having experienced at least one “face” in prompting individual processing and proto-arithmetical calculation later during testing. We speculate that mechanisms effective at the non-symbolic level may positively affect numerical performance.
Collapse
|
11
|
Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Sci Rep 2022; 12:12086. [PMID: 35840576 PMCID: PMC9287303 DOI: 10.1038/s41598-022-14963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Left–right asymmetries in the nervous system (lateralisation) influence a broad range of behaviours, from social responses to navigation and language. The role and pathways of endogenous and environmental mechanisms in the ontogeny of lateralisation remains to be established. The domestic chick is a model of both endogenous and experience-induced lateralisation driven by light exposure. Following the endogenous rightward rotation of the embryo, the asymmetrical position in the egg results in a greater exposure of the right eye to environmental light. To identify the genetic pathways activated by asymmetric light stimulation, and their time course, we exposed embryos to different light regimes: darkness, 6 h of light and 24 h of light. We used RNA-seq to compare gene expression in the right and left retinas and telencephalon. We detected differential gene expression in right vs left retina after 6 h of light exposure. This difference was absent in the darkness condition and had already disappeared by 24 h of light exposure, suggesting that light-induced activation is a self-terminating phenomenon. This transient effect of light exposure was associated with a downregulation of the sensitive-period mediator gene DIO2 (iodothyronine deiodinase 2) in the right retina. No differences between genes expressed in the right vs. left telencephalon were detected. Gene networks associated with lateralisation were connected to vascularisation, cell motility, and the extracellular matrix. Interestingly, we know that the extracellular matrix—including the differentially expressed PDGFRB gene—is involved in morphogenesis, sensitive periods, and in the endogenous chiral mechanism of primary cilia, that drives lateralisation. Our data show a similarity between endogenous and experience-driven lateralisation, identifying functional gene networks that affect lateralisation in a specific time window.
Collapse
|
12
|
Frasnelli E. Evolution and function of neurocognitive systems in non-human animals. Sci Rep 2021; 11:23487. [PMID: 34880266 PMCID: PMC8654867 DOI: 10.1038/s41598-021-02736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elisa Frasnelli
- CIMeC Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy. .,School of Life Sciences, University of Lincoln, Lincoln, Lincolnshire, LN6 7DL, UK.
| |
Collapse
|
13
|
Nine Levels of Explanation : A Proposed Expansion of Tinbergen's Four-Level Framework for Understanding the Causes of Behavior. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2021; 32:748-793. [PMID: 34739657 DOI: 10.1007/s12110-021-09414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/16/2023]
Abstract
Tinbergen's classic "On Aims and Methods of Ethology" (Zeitschrift für Tierpsychologie, 20, 1963) proposed four levels of explanation of behavior, which he thought would soon apply to humans. This paper discusses the need for multilevel explanation; Huxley and Mayr's prior models, and others that followed; Tinbergen's differences with Lorenz on "the innate"; and Mayr's ultimate/proximate distinction. It synthesizes these approaches with nine levels of explanation in three categories: phylogeny, natural selection, and genomics (ultimate causes); maturation, sensitive period effects, and routine environmental effects (intermediate causes); and hormonal/metabolic processes, neural circuitry, and eliciting stimuli (proximate causes), as a respectful extension of Tinbergen's levels. The proposed classification supports and builds on Tinbergen's multilevel model and Mayr's ultimate/proximate continuum, adding intermediate causes in accord with Tinbergen's emphasis on ontogeny. It requires no modification of Standard Evolutionary Theory or The Modern Synthesis, but shows that much that critics claim was missing was in fact part of Neo-Darwinian theory (so named by J. Mark Baldwin in The American Naturalist in 1896) all along, notably reciprocal causation in ontogeny, niche construction, cultural evolution, and multilevel selection. Updates of classical examples in ethology are offered at each of the nine levels, including the neuroethological and genomic findings Tinbergen foresaw. Finally, human examples are supplied at each level, fulfilling his hope of human applications as part of the biology of behavior. This broad ethological framework empowers us to explain human behavior-eventually completely-and vindicates the idea of human nature, and of humans as a part of nature.
Collapse
|
14
|
Versace E, Ragusa M, Pallante V, Wang S. Attraction for familiar conspecifics in young chicks (Gallus gallus): An interbreed study. Behav Processes 2021; 193:104498. [PMID: 34499985 DOI: 10.1016/j.beproc.2021.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
From the beginning of life, discriminating between familiar and unfamiliar individuals and staying in contact with conspecifics are important to establish social relationships. To better understand these early social behaviours, we studied the different responses to familiar/unfamiliar individuals in 4-day-old domestic chicks (Gallus gallus) in three genetically isolated breeds: Padovana, Polverara and Robusta maculata. Chicks discriminated between familiar and unfamiliar individuals, staying closer to familiar individuals. Social reinstatement and fear responses were measured as the average distance between subjects, the latency of the first step and exploration of the arena differed between breeds. More socially motivated chicks, that stayed in closer proximity, were less afraid of starting to move and explored the environment more extensively. Interbreed differences in social reinstatement indicate that social attraction shows genetic variability from the early stages of life.
Collapse
Affiliation(s)
- Elisabetta Versace
- School of Biological and Behavioural Sciences, Department of Biological and Experimental Psychology, Queen Mary University of London, 327 Mile End Road, E1 4NS, London, UK; Center for Mind/Brain Sciences, University of Trento, Italy.
| | - Morgana Ragusa
- Center for Mind/Brain Sciences, University of Trento, Italy
| | - Virginia Pallante
- Center for Mind/Brain Sciences, University of Trento, Italy; Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, the Netherlands
| | - Shuge Wang
- School of Biological and Behavioural Sciences, Department of Biological and Experimental Psychology, Queen Mary University of London, 327 Mile End Road, E1 4NS, London, UK
| |
Collapse
|
15
|
Monteiro T, Hart T, Kacelnik A. Imprinting on time-structured acoustic stimuli in ducklings. Biol Lett 2021; 17:20210381. [PMID: 34582734 PMCID: PMC8478521 DOI: 10.1098/rsbl.2021.0381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/27/2021] [Indexed: 01/30/2023] Open
Abstract
Filial imprinting is a dedicated learning process that lacks explicit reinforcement. The phenomenon itself is narrowly heritably canalized, but its content, the representation of the parental object, reflects the circumstances of the newborn. Imprinting has recently been shown to be even more subtle and complex than previously envisaged, since ducklings and chicks are now known to select and represent for later generalization abstract conceptual properties of the objects they perceive as neonates, including movement pattern, heterogeneity and inter-component relationships of same or different. Here, we investigate day-old Mallard (Anas platyrhynchos) ducklings' bias towards imprinting on acoustic stimuli made from mallards' vocalizations as opposed to white noise, whether they imprint on the temporal structure of brief acoustic stimuli of either kind, and whether they generalize timing information across the two sounds. Our data are consistent with a strong innate preference for natural sounds, but do not reliably establish sensitivity to temporal relations. This fits with the view that imprinting includes the establishment of representations of both primary percepts and selective abstract properties of their early perceptual input, meshing together genetically transmitted prior pre-dispositions with active selection and processing of the perceptual input.
Collapse
Affiliation(s)
- Tiago Monteiro
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Tom Hart
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Alex Kacelnik
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
16
|
Young chicks quickly lose their spontaneous preference to aggregate with females. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Lorenzi E, Lemaire BS, Versace E, Matsushima T, Vallortigara G. Resurgence of an Inborn Attraction for Animate Objects via Thyroid Hormone T 3. Front Behav Neurosci 2021; 15:675994. [PMID: 33953662 PMCID: PMC8092046 DOI: 10.3389/fnbeh.2021.675994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
For inexperienced brains, some stimuli are more attractive than others. Human neonates and newly hatched chicks preferentially orient towards face-like stimuli, biological motion, and objects changing speed. In chicks, this enhances exposure to social partners, and subsequent attachment trough filial imprinting. Early preferences are not steady. For instance, preference for stimuli changing speed fades away after 2 days in chicks. To understand the physiological mechanisms underlying these transient responses, we tested whether early preferences for objects changing speed can be promoted by thyroid hormone 3,5,3′-triiodothyronine (T3). This hormone determines the start of imprinting’s sensitive period. We found that the preference for objects changing speed can be re-established in female chicks treated with T3. Moreover, day-1 chicks treated with an inhibitor of endogenous T3 did not show any preference. These results suggest that the time windows of early predispositions and of sensitive period for imprinting are controlled by the same molecular mechanisms.
Collapse
Affiliation(s)
- Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | - Elisabetta Versace
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
18
|
Lemaire BS, Rucco D, Josserand M, Vallortigara G, Versace E. Stability and individual variability of social attachment in imprinting. Sci Rep 2021; 11:7914. [PMID: 33846440 PMCID: PMC8041793 DOI: 10.1038/s41598-021-86989-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Filial imprinting has become a model for understanding memory, learning and social behaviour in neonate animals. This mechanism allows the youngs of precocial bird species to learn the characteristics of conspicuous visual stimuli and display affiliative response to them. Although longer exposures to an object produce stronger preferences for it afterwards, this relation is not linear. Sometimes, chicks even prefer to approach novel rather than familiar objects. To date, little is known about how filial preferences develop across time. This study aimed to investigate filial preferences for familiar and novel imprinting objects over time. After hatching, chicks were individually placed in an arena where stimuli were displayed on two opposite screens. Using an automated setup, the duration of exposure and the type of stimuli were manipulated while the time spent at the imprinting stimulus was monitored across 6 days. We showed that prolonged exposure (3 days vs 1 day) to a stimulus produced robust filial imprinting preferences. Interestingly, with a shorter exposure (1 day), animals re-evaluated their filial preferences in functions of their spontaneous preferences and past experiences. Our study suggests that predispositions influence learning when the imprinting memories are not fully consolidated, driving animal preferences toward more predisposed stimuli.
Collapse
Affiliation(s)
- Bastien S. Lemaire
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy
| | - Daniele Rucco
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy ,grid.7563.70000 0001 2174 1754Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Mathilde Josserand
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy ,grid.25697.3f0000 0001 2172 4233Laboratory Dynamique du Language, University of Lyon 2, Lyon, France
| | - Giorgio Vallortigara
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy
| | - Elisabetta Versace
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy ,grid.4868.20000 0001 2171 1133School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
19
|
Rosa-Salva O, Mayer U, Versace E, Hébert M, Lemaire BS, Vallortigara G. Sensitive periods for social development: Interactions between predisposed and learned mechanisms. Cognition 2021; 213:104552. [PMID: 33402251 DOI: 10.1016/j.cognition.2020.104552] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
We analysed research that makes use of precocial species as animal models to describe the interaction of predisposed mechanisms and environmental factors in early learning, in particular for the development of social cognition. We also highlight the role of sensitive periods in this interaction, focusing on domestic chicks as one of the main animal models for this field. In the first section of the review, we focus on the emergence of early predispositions to attend to social partners. These attentional biases appear before any learning experience about social stimuli. However, non-specific experiences occurring during sensitive periods of the early post-natal life determine the emergence of these predisposed mechanisms for the detection of social partners. Social predispositions have an important role for the development learning-based social cognitive functions, showing the interdependence of predisposed and learned mechanisms in shaping social development. In the second part of the review we concentrate on the reciprocal interactions between filial imprinting and spontaneous (not learned) social predispositions. Reciprocal influences between these two sets of mechanisms ensure that, in the natural environment, filial imprinting will target appropriate social objects. Neural and physiological mechanisms regulating the sensitive periods for the emergence of social predispositions and for filial imprinting learning are also described.
Collapse
Affiliation(s)
- Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Elisabetta Versace
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy; Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, United Kingdom
| | - Marie Hébert
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Bastien S Lemaire
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy.
| |
Collapse
|
20
|
Individually distinctive features facilitate numerical discrimination of sets of objects in domestic chicks. Sci Rep 2020; 10:16408. [PMID: 33009471 PMCID: PMC7532216 DOI: 10.1038/s41598-020-73431-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Day-old domestic chicks approach the larger of two groups of identical objects, but in a 3 vs 4 comparison, their performance is random. Here we investigated whether adding individually distinctive features to each object would facilitate such discrimination. Chicks reared with 7 objects were presented with the operation 1 + 1 + 1 vs 1 + 1 + 1 + 1. When objects were all identical, chicks performed randomly, as expected (Experiment 1). In the remaining experiments, objects differed from one another due to additional features. Chicks succeeded when those features were differently oriented segments (Experiment 2) but failed when the features were arranged to depict individually different face-like displays (Experiment 3). Discrimination was restored if the face-like stimuli were presented upside-down, disrupting global processing (Experiment 4). Our results support the claim that numerical discrimination in 3 vs 4 comparison benefits from the presence of distinctive features that enhance object individuation due to individual processing. Interestingly, when the distinctive features are arranged into upright face-like displays, the process is susceptible to global over local interference due to configural processing. This study was aimed at assessing whether individual object processing affects numerical discrimination. We hypothesise that in humans similar strategies aimed at improving performance at the non-symbolic level may have positive effects on symbolic mathematical abilities.
Collapse
|