1
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
2
|
Diez-Martin E, Hernandez-Suarez L, Muñoz-Villafranca C, Martin-Souto L, Astigarraga E, Ramirez-Garcia A, Barreda-Gómez G. Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options. Int J Mol Sci 2024; 25:7062. [PMID: 39000169 PMCID: PMC11241012 DOI: 10.3390/ijms25137062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
In inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), the immune system relentlessly attacks intestinal cells, causing recurrent tissue damage over the lifetime of patients. The etiology of IBD is complex and multifactorial, involving environmental, microbiota, genetic, and immunological factors that alter the molecular basis of the organism. Among these, the microbiota and immune cells play pivotal roles; the microbiota generates antigens recognized by immune cells and antibodies, while autoantibodies target and attack the intestinal membrane, exacerbating inflammation and tissue damage. Given the altered molecular framework, the analysis of multiple molecular biomarkers in patients proves exceedingly valuable for diagnosing and prognosing IBD, including markers like C reactive protein and fecal calprotectin. Upon detection and classification of patients, specific treatments are administered, ranging from conventional drugs to new biological therapies, such as antibodies to neutralize inflammatory molecules like tumor necrosis factor (TNF) and integrin. This review delves into the molecular basis and targets, biomarkers, treatment options, monitoring techniques, and, ultimately, current challenges in IBD management.
Collapse
Affiliation(s)
- Eguzkiñe Diez-Martin
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Leidi Hernandez-Suarez
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Carmen Muñoz-Villafranca
- Department of Gastroenterology, University Hospital of Basurto, Avda Montevideo 18, 48013 Bilbao, Spain
| | - Leire Martin-Souto
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | |
Collapse
|
3
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
4
|
Salerno-Goncalves R, Chen H, Bafford AC, Izquierdo M, Hormazábal JC, Lagos R, Tettelin H, D’Mello A, Booth JS, Fasano A, Levine MM, Sztein MB. Early host immune responses in a human organoid-derived gallbladder monolayer to Salmonella Typhi strains from patients with acute and chronic infections: a comparative analysis. Front Immunol 2024; 15:1334762. [PMID: 38533492 PMCID: PMC10963533 DOI: 10.3389/fimmu.2024.1334762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi), a human-restricted pathogen, invades the host through the gut to cause typhoid fever. Recent calculations of the typhoid fever burden estimated that more than 10 million new typhoid fever cases occur in low and middle-income countries, resulting in 65,400-187,700 deaths yearly. Interestingly, if not antibiotic-treated, upon the resolution of acute disease, 1%-5% of patients become asymptomatic chronic carriers. Chronically infected hosts are not only critical reservoirs of infection that transmit the disease to naive individuals but are also predisposed to developing gallbladder carcinoma. Nevertheless, the molecular mechanisms involved in the early interactions between gallbladder epithelial cells and S. Typhi remain largely unknown. Based on our previous studies showing that closely related S. Typhi strains elicit distinct innate immune responses, we hypothesized that host molecular pathways activated by S. Typhi strains derived from acutely and chronically infected patients would differ. To test this hypothesis, we used a novel human organoid-derived polarized gallbladder monolayer model, and S. Typhi strains derived from acutely and chronically infected patients. We found that S. Typhi strains derived from acutely and chronically infected patients differentially regulate host mitogen-activated protein kinase (MAPK) and S6 transcription factors. These variations might be attributed to differential cytokine signaling, predominantly via TNF-α and IL-6 production and appear to be influenced by the duration the isolate was subjected to selective pressures in the gallbladder. These findings represent a significant leap in understanding the complexities behind chronic S. Typhi infections in the gallbladder and may uncover potential intervention targets.
Collapse
Affiliation(s)
- Rosângela Salerno-Goncalves
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haiyan Chen
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrea C. Bafford
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mariana Izquierdo
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Juan Carlos Hormazábal
- Seccion Bacteriologia, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile (ISP), Santiago, Chile
| | - Rosanna Lagos
- Seccion Bacteriologia, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile (ISP), Santiago, Chile
| | - Hervé Tettelin
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Adonis D’Mello
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Myron M. Levine
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
5
|
Huang Y, Liu X, Wang HY, Chen JY, Zhang X, Li Y, Lu Y, Dong Z, Liu K, Wang Z, Wang Q, Fan G, Zou J, Liu S, Shao C. Single-cell transcriptome landscape of zebrafish liver reveals hepatocytes and immune cell interactions in understanding nonalcoholic fatty liver disease. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109428. [PMID: 38325594 DOI: 10.1016/j.fsi.2024.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease in the world. Immunity is the major contributing factor in NAFLD; however, the interaction of immune cells and hepatocytes in disease progression has not been fully elucidated. As a popular species for studying NAFLD, zebrafish, whose liver is a complex immune system mediated by immune cells and non-immune cells in maintaining immune tolerance and homeostasis. Understanding the cellular composition and immune environment of zebrafish liver is of great significance for its application in NAFLD. Here, we established a liver atlas that consists of 10 cell types using single-cell RNA sequencing (scRNA-seq). By examining the heterogeneity of hepatocytes and analyzing the expression of NAFLD-associated genes in the specific cluster, we provide a potential target cell model to study NAFLD. Additionally, our analysis identified two subtypes of distinct resident macrophages with inflammatory and non-inflammatory functions and characterized the successive stepwise development of T cell subclusters in the liver. Importantly, we uncovered the possible regulation of macrophages and T cells on target cells of fatty liver by analyzing the cellular interaction between hepatocytes and immune cells. Our data provide valuable information for an in-depth study of immune cells targeting hepatocytes to regulate the immune balance in NAFLD.
Collapse
Affiliation(s)
- Yingyi Huang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Xiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Hong-Yan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Jian-Yang Chen
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Xianghui Zhang
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Yubang Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Yifang Lu
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China
| | - Kaiqiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China
| | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China; BGI Research, 518083, Shenzhen, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 201306, Shanghai, China
| | - Shanshan Liu
- MGI Tech, 518083, Shenzhen, China; BGI Research, 518083, Shenzhen, China.
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Jasim SA, Majeed AA, Uinarni H, Alshuhri M, Alzahrani AA, Ibrahim AA, Alawadi A, Abed Al-Abadi NK, Mustafa YF, Ahmed BA. Long non-coding RNA (lncRNA) PVT1 in drug resistance of cancers: Focus on pathological mechanisms. Pathol Res Pract 2024; 254:155119. [PMID: 38309019 DOI: 10.1016/j.prp.2024.155119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
According to estimates, cancer will be the leading cause of death globally in 2022, accounting for 9.6 million deaths. At present, the three main therapeutic modalities utilized to treat cancer are radiation therapy, chemotherapy, and surgery. However, during treatment, tumor cells resistant to chemotherapy may arise. Drug resistance remains a major oppose since it often leads to therapeutic failure. Furthermore, the term "acquired drug resistance" describes the situation where tumor cells already display drug resistance before undergoing chemotherapy. However, little is still known about the basic mechanisms underlying chemotherapy-induced drug resistance. The development of new technologies and bioinformatics has led to the discovery of additional genes associated with drug resistance. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been linked to an increased risk of cancer, according to a growing body of research. Apart from biological functions associated with cell division, development, pluripotency, and cell cycle, lncRNA PVT1 contributes significantly to the regulation of various aspects of genome function, such as transcription, splicing, and epigenetics. The article will address the mechanism by which lncRNA PVT1 influences drug resistance in cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq; Biotechnology department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital, Jakarta, Indonesia.
| | - Mohammed Alshuhri
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Kharj, Sauadi Arabia
| | | | - Abeer A Ibrahim
- Inorganic Chemistry Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Batool Ali Ahmed
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
7
|
Olivier JF, Langlais D, Jeyakumar T, Polyak MJ, Galarneau L, Cayrol R, Jiang H, Molloy KR, Xu G, Suzuki H, LaCava J, Gros P, Fodil N. CCDC88B interacts with RASAL3 and ARHGEF2 and regulates dendritic cell function in neuroinflammation and colitis. Commun Biol 2024; 7:77. [PMID: 38200184 PMCID: PMC10781698 DOI: 10.1038/s42003-023-05751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
CCDC88B is a risk factor for several chronic inflammatory diseases in humans and its inactivation causes a migratory defect in DCs in mice. CCDC88B belongs to a family of cytoskeleton-associated scaffold proteins that feature protein:protein interaction domains. Here, we identified the Rho/Rac Guanine Nucleotide Exchange Factor 2 (ARHGEF2) and the RAS Protein Activator Like 3 (RASAL3) as CCDC88B physical and functional interactors. Mice defective in Arhgef2 or Rasal3 show dampened neuroinflammation, and display altered cellular response and susceptibility to colitis; ARHGEF2 maps to a human Chromosome 1 locus associated with susceptibility to IBD. Arhgef2 and Rasal3 mutant DCs show altered migration and motility in vitro, causing either reduced (Arhgef2) or enhanced (Rasal3) migratory properties. The CCDC88B/RASAL3/ARHGEF2 complex appears to regulate DCs migration by modulating activation of RHOA, with ARHGEF2 and RASAL3 acting in opposite regulatory fashions, providing a molecular mechanism for the involvement of these proteins in DCs immune functions.
Collapse
Affiliation(s)
- Jean-Frederic Olivier
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - David Langlais
- McGill Research Center on Complex Traits, Montreal, QC, Canada
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Thiviya Jeyakumar
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - Maria J Polyak
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - Luc Galarneau
- Department of Medicine, Sherbrooke University, Sherbrooke, QC, Canada
| | - Romain Cayrol
- Department of Pathology, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
- University of Montreal Hospital Center Research Center (CR-CHUM), Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Guoyue Xu
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Harumi Suzuki
- Department of Immunology and Pathology, National Center for Global Health and Medicine, Tokyo, Japan
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- McGill Research Center on Complex Traits, Montreal, QC, Canada.
| | - Nassima Fodil
- McGill Research Center on Complex Traits, Montreal, QC, Canada
- CERMO-FC, Pavillon des Sciences Biologiques, Montreal, QC, Canada
| |
Collapse
|
8
|
Ocansey DKW, Qian F, Cai P, Ocansey S, Amoah S, Qian Y, Mao F. Current evidence and therapeutic implication of PANoptosis in cancer. Theranostics 2024; 14:640-661. [PMID: 38169587 PMCID: PMC10758053 DOI: 10.7150/thno.91814] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Regulated cell death (RCD) is considered a critical pathway in cancer therapy, contributing to eliminating cancer cells and influencing treatment outcomes. The application of RCD in cancer treatment is marked by its potential in targeted therapy and immunotherapy. As a type of RCD, PANoptosis has emerged as a unique form of programmed cell death (PCD) characterized by features of pyroptosis, apoptosis, and necroptosis but cannot be fully explained by any of these pathways alone. It is regulated by a multi-protein complex called the PANoptosome. As a relatively new concept first described in 2019, PANoptosis has been shown to play a role in many diseases, including cancer, infection, and inflammation. This study reviews the application of PCD in cancer, particularly the emergence and implication of PANoptosis in developing therapeutic strategies for cancer. Studies have shown that the characterization of PANoptosis patterns in cancer can predict survival and response to immunotherapy and chemotherapy, highlighting the potential for PANoptosis to be used as a therapeutic target in cancer treatment. It also plays a role in limiting the spread of cancer cells. PANoptosis allows for the elimination of cancer cells by multiple cell death pathways and has the potential to address various challenges in cancer treatment, including drug resistance and immune evasion. Moreover, active investigation of the mechanisms and potential therapeutic agents that can induce PANoptosis in cancer cells is likely to yield effective cancer treatments and improve patient outcomes. Research on PANoptosis is still ongoing, but it is a rapidly evolving field with the potential to lead to new treatments for various diseases, including cancer.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, Jiangsu, P.R. China
- Directorate of University Health Services, University of Cape Coast, Cape Coast CC0959347, Central Region, Ghana
| | - Fei Qian
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, Jiangsu, P.R. China
| | - Peipei Cai
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, Jiangsu, P.R. China
| | - Stephen Ocansey
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Central Region, Ghana
| | - Samuel Amoah
- Directorate of University Health Services, University of Cape Coast, Cape Coast CC0959347, Central Region, Ghana
| | - Yingchen Qian
- Department of Pathology, Nanjing Jiangning Hospital, Nanjing 211100, Jiangsu, P.R. China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, Jiangsu, P.R. China
| |
Collapse
|
9
|
Zeng J, Yao J, Zhou Y, Yu L, Zhang L, Wang C, Luo Y, Li Z, Xu B. Expression of interferon regulatory factor family and its prognostic value in acute myeloid leukemia. Future Oncol 2023; 19:2465-2479. [PMID: 38054394 DOI: 10.2217/fon-2023-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Aim: To elucidate the clinicopathological and prognostic values of interferon regulatory factor (IRF) family genes in acute myeloid leukemia (AML). Patients & methods: Differential expression analysis and survival analysis from several reliable databases were conducted and further validated using patients with AML. Results: The expression level of IRF1/2/4/5/7/8/9 in patients with AML was upregulated, while IRF3/6 expression was downregulated. High IRF1/7/9 expression indicated a worse overall survival rate. Conclusion: Overexpression of IRF1/7/9 may be associated with poor survival in patients with AML, suggesting that the IRF family may be a promising therapeutic target.
Collapse
Affiliation(s)
- Jiawei Zeng
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 351002, China
- Department of Hematology, the First Affiliated Hospital of Xiamen University & Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- Key Laboratory for Diagnosis & Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
- The Graduate School of Fujian Medical University, Fuzhou, 351002, China
| | - Jingwei Yao
- Department of Hematology, the First Affiliated Hospital of Xiamen University & Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- Key Laboratory for Diagnosis & Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Yong Zhou
- Department of Hematology, the First Affiliated Hospital of Xiamen University & Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- Key Laboratory for Diagnosis & Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Lian Yu
- Department of Hematology & Rheumatology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Li Zhang
- Department of Hematology, the First Affiliated Hospital of Xiamen University & Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- Key Laboratory for Diagnosis & Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Caiyan Wang
- Department of Hematology, the First Affiliated Hospital of Xiamen University & Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- Key Laboratory for Diagnosis & Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Yiming Luo
- Department of Hematology, the First Affiliated Hospital of Xiamen University & Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- Key Laboratory for Diagnosis & Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Zhifeng Li
- Department of Hematology, the First Affiliated Hospital of Xiamen University & Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
| | - Bing Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 351002, China
- Department of Hematology, the First Affiliated Hospital of Xiamen University & Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- Key Laboratory for Diagnosis & Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
- The Graduate School of Fujian Medical University, Fuzhou, 351002, China
| |
Collapse
|
10
|
Chemically Induced Colitis-Associated Cancer Models in Rodents for Pharmacological Modulation: A Systematic Review. J Clin Med 2022; 11:jcm11102739. [PMID: 35628865 PMCID: PMC9146029 DOI: 10.3390/jcm11102739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Animal models for colitis-associated colorectal cancer (CACC) represent an important tool to explore the mechanistic basis of cancer-related inflammation, providing important evidence that several inflammatory mediators play specific roles in the initiation and perpetuation of colitis and CACC. Although several original articles have been published describing the CACC model in rodents, there is no consensus about the induction method. This review aims to identify, summarize, compare, and discuss the chemical methods for the induction of CACC through the PRISMA methodology. METHODS We searched MEDLINE via the Pubmed platform for studies published through March 2021, using a highly sensitive search expression. The inclusion criteria were only original articles, articles where a chemically-induced animal model of CACC is described, preclinical studies in vivo with rodents, and articles published in English. RESULTS Chemically inducible models typically begin with the administration of a carcinogenic compound (as azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)), and inflammation is caused by repeated cycles of colitis-inducing agents (such as 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS)). The strains mostly used are C57BL/6 and Balb/c with 5-6 weeks. To characterize the preclinical model, the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, angiogenesis markers such as proliferating cell nuclear antigen (PCNA), marker of proliferation Ki-67, and caspase 3, the presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of inflammation. CONCLUSION The AOM administration seems to be important to the CACC induction method, since the carcinogenic effect is achieved with just one administration. DSS has been the more used inflammatory agent; however, the TNBS contribution should be more studied, since it allows a reliable, robust, and a highly reproducible animal model of intestinal inflammation.
Collapse
|
11
|
Jerby-Arnon L, Regev A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nat Biotechnol 2022; 40:1467-1477. [PMID: 35513526 PMCID: PMC9547813 DOI: 10.1038/s41587-022-01288-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
Deciphering the functional interactions of cells in tissues remains a major challenge. We describe DIALOGUE, a method to systematically uncover multicellular programs (MCPs) — combinations of coordinated cellular programs in different cell types that form higher-order functional units at the tissue level — from either spatial data or single-cell data obtained without spatial information. Tested on spatial datasets from the mouse hypothalamus, cerebellum, visual cortex, and neocortex, DIALOGUE identified MCPs associated with animal behavior and recovered spatial properties when tested on unseen data, while outperforming other methods and metrics. In spatial data from human lung cancer, DIALOGUE identified MCPs marking immune activation and tissue remodeling. Applied to scRNA-seq data across individuals or regions, DIALOGUE uncovered MCPs in Alzheimer’s disease, ulcerative colitis, and treatment with cancer immunotherapy. These programs were predictive of disease outcome and predisposition in independent cohorts and included risk genes from genome-wide association studies (GWAS). DIALOGUE enables the analysis of multicellular regulation in health and disease. Coordinated gene programs spanning multiple different cell types are identified in healthy and diseased tissues.
Collapse
Affiliation(s)
- Livnat Jerby-Arnon
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA. .,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Genentech, South San Francisco, CA, USA.
| |
Collapse
|
12
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
13
|
Xu Y, Xu X, Ocansey DKW, Cao H, Qiu W, Tu Q, Mao F. CircRNAs as promising biomarkers of inflammatory bowel disease and its associated-colorectal cancer. Am J Transl Res 2021; 13:1580-1593. [PMID: 33841681 PMCID: PMC8014397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
In recent years, research on the pathogenesis of inflammatory bowel disease (IBD) and its associated-colorectal cancer has been well documented to involve environmental, genetic, immune, and intestinal microbiota factors. Evidence indicates that, regardless of the current high global incidence of IBD with over 3.5 million cases in Europe and North America only, it continues to emerge in newly industrialized countries across Asia, Middle East, and South America. Individuals with IBD have significant increased risk of gastrointestinal and extra-intestinal malignancies, particularly, colorectal cancer (CRC) and lymphomas. Among the significant areas of exploration in IBD and its associated-CRC is the search for effective and reliable diagnostic and prognostic markers, and treatment targets. To this effect, the role of non-coding RNAs in IBD and its associated-CRC has attracted research attention, among which microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) get more detailed exploration while little is known about circular RNAs (circRNAs). This review focuses on the emerging role of circRNAs in the diagnosis, prognosis, and treatment of IBD and its associated-CRC. It introduces the biogenesis of circRNAs and brings an up-to-date report on those found within IBD and CRC environment, as well as their participation toward the promotion or suppression of the conditions, and their diagnostic potentials.
Collapse
Affiliation(s)
- Yuting Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Directorate of University Health Services, University of Cape CoastGhana
| | - Hua Cao
- Nanjing Jiangning HospitalNanjing 211100, Jiangsu, China
| | - Wei Qiu
- Nanjing Jiangning HospitalNanjing 211100, Jiangsu, China
| | - Qiang Tu
- Nanjing Jiangning HospitalNanjing 211100, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| |
Collapse
|
14
|
Li JY, Xiao J, Gao M, Zhou HF, Fan H, Sun F, Cui DD. IRF/Type I IFN signaling serves as a valuable therapeutic target in the pathogenesis of inflammatory bowel disease. Int Immunopharmacol 2021; 92:107350. [PMID: 33444921 DOI: 10.1016/j.intimp.2020.107350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/03/2023]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease characterized by unresolved colitis and epithelial injury. Intestinal microbiota and its interaction with immune system are critical etiologic factors. In response to gut virome and bacteria derived nucleic acid, interferon regulatory factors (IRFs) are activated to promote the production of cytokines, including type I interferons (IFN-Is), to help maintain intestinal homeostasis under both physiological and pathophysiological conditions. However, derailed IRF/IFN-I pathway other-wisely contributes to the progression of IBD with distinct IRF member exerting differential regulatory effect. Here, we summarize the recent advances regarding the role of IRF/IFN-I pathway in the development of IBD. We emphasize that IFN-I is a double-edged sword in IBD pathogenesis, as IFN-Is are protective in acute colitis while becoming pro-inflammatory during the chronic recovery phase. Besides, the functional outcome of IRFs is diverse and complex, which hinges on the cell types affected and the presence of other immune mediators. All in all, IRF/IFN-I pathway serves as a versatile regulator in IBD pathogenesis and holds the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Gao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dan-Dan Cui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Shao YJ, Ni JJ, Wei SY, Weng XP, Shen MD, Jia YX, Meng LN. IRF1-mediated immune cell infiltration is associated with metastasis in colon adenocarcinoma. Medicine (Baltimore) 2020; 99:e22170. [PMID: 32925784 PMCID: PMC7489583 DOI: 10.1097/md.0000000000022170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Evidence suggests that metastasis is chiefly responsible for the poor prognosis of colon adenocarcinoma (COAD). The tumor microenvironment plays a vital role in regulating this biological process. However, the mechanisms involved remain unclear. The aim of this study was to identify crucial metastasis-related biomarkers in the tumor microenvironment and investigate its association with tumor-infiltrating immune cells. METHODS We obtained gene expression profiles and clinical information from The Cancer Genome Atlas database. According to the "Estimation of STromal and Immune cells in MAlignant Tumor tissue using Expression data" algorithm, each sample generated the immune and stromal scores. Following correlation analysis, the metastasis-related gene was identified in The Cancer Genome Atlas database and validated in the GSE40967 dataset from Gene Expression Omnibus. The correlation between metastasis-related gene and infiltrating immune cells was assessed using the Tumor IMmune Estimation Resource database. RESULTS The analysis included 332 patients; the metastatic COAD samples showed a low immune score. Correlation analysis results showed that interferon regulatory factor 1 (IRF1) was associated with tumor stage, lymph node metastasis, and distant metastasis. Furthermore, significant associations between IRF1 and CD8+ T cells, T cell (general), dendritic cells, T-helper 1 cells, and T cell exhaustion were demonstrated by Spearmans correlation coefficients and P values. CONCLUSIONS The present findings suggest that IRF1 is associated with metastasis and the degree of immune infiltration of CD8+ T cells (general), dendritic cells, T-helper 1 cells, and T cell exhaustion in COAD. These results may provide information for immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Yao-jian Shao
- First College of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou
| | - Jun-jie Ni
- First College of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou
| | - Shen-yu Wei
- First College of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou
| | - Xiong-peng Weng
- Second College of Clinical Medical, Wenzhou Medical University, Wenzhou
| | - Meng-die Shen
- First College of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou
| | - Yi-xin Jia
- First College of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou
| | - Li-na Meng
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou, Zhejiang, PR China
| |
Collapse
|
16
|
Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel) 2020; 12:cancers12061411. [PMID: 32486098 PMCID: PMC7352439 DOI: 10.3390/cancers12061411] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages are key innate immune cells in the tumor microenvironment (TME) that regulate primary tumor growth, vascularization, metastatic spread and tumor response to various types of therapies. The present review highlights the mechanisms of macrophage programming in tumor microenvironments that act on the transcriptional, epigenetic and metabolic levels. We summarize the latest knowledge on the types of transcriptional factors and epigenetic enzymes that control the direction of macrophage functional polarization and their pro- and anti-tumor activities. We also focus on the major types of metabolic programs of macrophages (glycolysis and fatty acid oxidation), and their interaction with cancer cells and complex TME. We have discussed how the regulation of macrophage polarization on the transcriptional, epigenetic and metabolic levels can be used for the efficient therapeutic manipulation of macrophage functions in cancer.
Collapse
|