1
|
Hanada D, Mochizuki M, Nakahara T, Tanaka A. Novel standardized method for inducing medication-related osteonecrosis of the jaw in rats and precise quantitative assessment of pathological outcomes. Odontology 2025:10.1007/s10266-025-01076-7. [PMID: 40024948 DOI: 10.1007/s10266-025-01076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/09/2025] [Indexed: 03/04/2025]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a serious complication of antiresorptive therapies, characterized by delayed healing, bone necrosis, and infection following dental procedures. Progress in the understanding of its pathophysiology has been hindered by the lack of standardized animal models. Existing models involving first molar or multiple molar extractions disrupt anatomic landmarks and face technical challenges, such as retained root fragments and inconsistent surgical procedures, which reduce reproducibility. To address these limitations, we developed a novel rat MRONJ model using maxillary second molar extraction combined with standardized palatal gingiva resection. By preserving the adjacent first and third molars, anatomic landmarks were retained, enabling precise and reproducible evaluations. The modified extraction technique incorporating wedge insertion improved the success rate and minimized root fractures. Notably, our findings revealed that suppressed bone metabolism in the MRONJ model inhibited natural tooth movement observed in the control group, highlighting a unique pathologic hallmark of MRONJ. The model effectively reproduced MRONJ-specific features, including persistent bone exposure, impaired bone healing, necrotic bone formation, and inflammation. Three-dimensional micro-computed tomography and histologic analyses provided robust and quantitative assessments of bone pathology. By integrating anatomic standardization and precise quantitative assessments, this model addresses the key limitations of previous approaches. It also provides a reliable platform for investigating the pathogenesis of MRONJ and for assessing preventive and therapeutic strategies. This approach contributes to translational research and holds promise for improving clinical outcomes.
Collapse
Affiliation(s)
- Daichi Hanada
- The Course of Clinical Science, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Oral and Maxillofacial Surgery, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, 1‑8 Hamaura‑cho, Chuo‑ku, Niigata, 951‑8580, Japan
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, The Nippon Dental University, 1‑8 Hamaura‑cho, Chuo‑ku, Niigata, 951‑8580, Japan
| | - Mai Mochizuki
- Department of Life Science Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Akira Tanaka
- The Course of Clinical Science, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Oral and Maxillofacial Surgery, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, 1‑8 Hamaura‑cho, Chuo‑ku, Niigata, 951‑8580, Japan
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, The Nippon Dental University, 1‑8 Hamaura‑cho, Chuo‑ku, Niigata, 951‑8580, Japan
| |
Collapse
|
2
|
Zhu S, Cui Y, Zhang W, Ji Y, Li L, Luo S, Cui J, Li M. Inflammation Can Be a High-Risk Factor for Mucosal Nonunion of MRONJ by Regulating SIRT1 Signaling When Treated with an Oncologic Dose of Zoledronate. Drug Des Devel Ther 2024; 18:2793-2812. [PMID: 38979400 PMCID: PMC11229984 DOI: 10.2147/dddt.s456811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Zoledronate (ZA) stands as a highly effective antiresorptive agent known to trigger medication-related osteonecrosis of the jaw (MRONJ). Its clinical dosages primarily encompass those used for oncologic and osteoporosis treatments. While inflammation is recognized as a potential disruptor of mucosal healing processes associated with ZA, prior research has overlooked the influence of varying ZA dosages on tissue adaptability. Therefore, a deeper understanding of the specific mechanisms by which inflammation exacerbates ZA-induced MRONJ, particularly when inflammation acts as a risk factor, remains crucial. Methods Cell proliferation and migration of human oral keratinocytes (HOK) was analyzed after treatment with different doses of ZA and/or lipopolysaccharide (LPS) to assess their possible effect on mucosal healing of extraction wounds. Mouse periodontitis models were established using LPS, and histological changes in extraction wounds were observed after the administration of oncologic dose ZA. Hematoxylin and eosin (HE) staining and immunofluorescence were used to evaluate mucosal healing. Results In vitro, LPS did not exacerbate the effects of osteoporosis therapeutic dose of ZA on the proliferation and migration of HOK cells, while aggravated these with the oncologic dose of ZA treatment by inducing mitochondrial dysfunction and oxidative stress via regulating SIRT1 expression. Furthermore, SIRT1 overexpression can alleviate this process. In vivo, local injection of LPS increased the nonunion of mucous membranes in MRONJ and decreased the expression of SIRT1, PGC-1α, and MnSOD. Conclusion Inflammation aggravates oncologic dose of ZA-induced mitochondrial dysfunction and oxidative stress via a SIRT1-dependent pathway, enhancing the risk of impaired mucosal healing in MRONJ. Our study implies that inflammation becomes a critical risk factor for MRONJ development at higher ZA concentrations. Elucidating the mechanisms of inflammation as a risk factor for mucosal non-healing in MRONJ could inform the development of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Siqi Zhu
- School of Stomatology, Jinzhou Medical University, Jinzhou, People's Republic of China
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yajun Cui
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yu Ji
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Lingshuang Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Shenglei Luo
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jing Cui
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological Hospital, Jinan, People's Republic of China
- Central Laboratory, Jinan Key Laboratory of oral tissue regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, People's Republic of China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
3
|
Hadad H, Matheus HR, Pai SI, Souza FA, Guastaldi FPS. Rodents as an animal model for studying tooth extraction-related medication-related osteonecrosis of the jaw: assessment of outcomes. Arch Oral Biol 2024; 159:105875. [PMID: 38160519 PMCID: PMC11729500 DOI: 10.1016/j.archoralbio.2023.105875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To assess the outcomes of several rodent animal models for studying tooth extraction-related medication-related osteonecrosis of the jaw (MRONJ). DESIGN After a search of the databases, 2004 articles were located, and 118 corroborated the inclusion factors (in vivo studies in rodents evaluating tooth extraction as a risk factor for the development of MRONJ). RESULTS Numerous studies attempting to establish an optimal protocol to induce MRONJ were found. Zoledronic acid (ZA) was the most used drug, followed by alendronate (ALN). Even when ZA did not lead to the development of MRONJ, its effect compromised the homeostasis of the bone and soft tissue. The association of other risk factors (dexamethasone, diabetes, and tooth-related inflammatory dental disease) besides tooth extraction also played a role in the development of MRONJ. In addition, studies demonstrated a relationship between cumulative dose and MRONJ. CONCLUSIONS Both ZA and ALN can lead to MRONJ in rodents when equivalent human doses (in osteoporosis or cancer treatment) are used. Local oral risk factors and tooth-related inflammatory dental disease increase the incidence of MRONJ in a tooth extraction-related rodent model.
Collapse
Affiliation(s)
- Henrique Hadad
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA; Department of Diagnosis and Surgery, Oral & Maxillofacial Surgery Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Henrique R Matheus
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA; Department of Diagnosis and Surgery, Periodontics Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Sara I Pai
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Francisley A Souza
- Department of Diagnosis and Surgery, Oral & Maxillofacial Surgery Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Fernando P S Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Berg T, Doppelt-Flikshtain O, Coyac BR, Zigdon-Giladi H. Oral fibroblasts rescue osteogenic differentiation of mesenchymal stem cells after exposure to Zoledronic acid in a paracrine effect. Front Pharmacol 2023; 14:1172705. [PMID: 37637413 PMCID: PMC10450747 DOI: 10.3389/fphar.2023.1172705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Background: Medication-related osteonecrosis of the jaw is a serious complication that develops in oncologic patients treated with Zoledronic acid. Although used for over 30 years, the influence of Zoledronic acid on bone has been thoroughly investigated, mainly on osteoclasts. While decreasing osteoclast differentiation and function, for many years it was thought that Zoledronic acid increased osteoblast differentiation, thus increasing bone volume. Moreover, despite the influence of soft tissue on the bone healing process, the impact of zoledronic acid on the interaction between soft tissue and bone was not investigated. Aim: Our goal was to investigate the influence of Zoledronic Acid and soft tissue cells on osteogenic differentiation of mesenchymal stem cells (MSCs). Materials and methods: Osteogenic differentiation of MSCs was examined after exposure to Zoledronic Acid. To determine the influence of soft tissue cells on MSCs' osteogenic differentiation, conditioned media from keratinocytes and oral fibroblasts were added to osteogenic medium supplemented with Zoledronic Acid. Proteomic composition of keratinocytes' and fibroblasts' conditioned media were analyzed. Results: Zoledronic Acid decreased osteogenic differentiation of MSCs by seven-fold. The osteogenic differentiation of MSCs was restored by the supplementation of fibroblasts' conditioned medium to osteogenic medium, despite Zoledronic acid treatment. Five osteogenic proteins involved in the TGFβ pathway were exclusively identified in fibroblasts' conditioned medium, suggesting their role in the rescue effect. Conclusion: Oral fibroblasts secrete proteins that enable osteogenic differentiation of MSCs in the presence of Zoledronic Acid.
Collapse
Affiliation(s)
- Tal Berg
- Laboratory for Bone Repair, Rambam Healthcare Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ofri Doppelt-Flikshtain
- Laboratory for Bone Repair, Rambam Healthcare Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Benjamin R. Coyac
- Laboratory for Bone Repair, Rambam Healthcare Campus, Haifa, Israel
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Healthcare Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
5
|
Salybekov AA, Hassanpour M, Kobayashi S, Asahara T. Therapeutic application of regeneration-associated cells: a novel source of regenerative medicine. Stem Cell Res Ther 2023; 14:191. [PMID: 37533070 PMCID: PMC10394824 DOI: 10.1186/s13287-023-03428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Chronic diseases with comorbidities or associated risk factors may impair the function of regenerative cells and the regenerative microenvironment. Following this consideration, the vasculogenic conditioning culture (VCC) method was developed to boost the regenerative microenvironment to achieve regeneration-associated cells (RACs), which contain vasculogenic endothelial progenitor cells (EPCs) and anti-inflammatory/anti-immunity cells. Preclinical and clinical studies demonstrate that RAC transplantation is a safe and convenient cell population for promoting ischemic tissue recovery based on its strong vasculogenicity and functionality. The outputs of the scientific reports reviewed in the present study shed light on the fact that RAC transplantation is efficient in curing various diseases. Here, we compactly highlight the universal features of RACs and the latest progress in their translation toward clinics.
Collapse
Affiliation(s)
- Amankeldi A Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan.
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan.
| | - Mehdi Hassanpour
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
6
|
Etemadi Sh M, Shooshtarian F, Tajmiri G, Sehat M. Histopathological assessment of the preventive effect of leukocyte-platelet-rich fibrin on bisphosphonate-related osteonecrosis of the jaw following dental extraction: An animal study. Heliyon 2023; 9:e17792. [PMID: 37483739 PMCID: PMC10362191 DOI: 10.1016/j.heliyon.2023.e17792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/25/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Background Leukocyte- and platelet-rich fibrin (L-PRF) could be considered a preventive measure in Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ). The present experiment aimed to assess the preventive effects of L-PRF on osteonecrosis of the jaw in rats. Methods In this interventional animal study with a split-mouth design, 28 rats were randomly allocated to saline (negative control), bisphosphonate (positive control), and Bis + L-PRF (case) groups. Bilateral extraction of maxillary molar teeth was performed followed by random application of L-PRF to one of the extraction sockets treated with Zoledronic acid for four weeks. Clinical occurrence of BRONJ and histopathologic evaluations were done, and data were subjected to the Kruskal-Wallis test, Mann-Whitney U test and exact Fisher test performed using SPSS 25. The significance level was set at 0.05. Results The application of L-PRF resulted in a 41.67% reduction in osteonecrosis centers and the number of osteoclast cells. Also, Kruskal Wallis test results showed a significant difference among the three groups regarding the frequency distribution of inflammation severity. However, no significant difference was detected regarding the frequency distribution of the blood vessels (Kruskal Wallis test, P-value = 0.649). Conclusion It could be inferred that possible preventive effects on the clinical occurrence of osteonecrosis could be expected from the application of L-PRF.
Collapse
Affiliation(s)
- Milad Etemadi Sh
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Shooshtarian
- Dental Students' Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Tajmiri
- Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - MohammadSoroush Sehat
- Dental Students' Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Guirguis RH, Tan LP, Hicks RM, Hasan A, Duong TD, Hu X, Hng JYS, Hadi MH, Owuama HC, Matthyssen T, McCullough M, Canfora F, Paolini R, Celentano A. In Vitro Cytotoxicity of Antiresorptive and Antiangiogenic Compounds on Oral Tissues Contributing to MRONJ: Systematic Review. Biomolecules 2023; 13:973. [PMID: 37371553 DOI: 10.3390/biom13060973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Invasive dental treatment in patients exposed to antiresorptive and antiangiogenic drugs can cause medication-related osteonecrosis of the jaw (MRONJ). Currently, the exact pathogenesis of this disease is unclear. METHODS In March 2022, Medline (Ovid), Embase (Ovid), Scopus, and Web of Science were screened to identify eligible in vitro studies investigating the effects of antiresorptive and antiangiogenic compounds on orally derived cells. RESULTS Fifty-nine articles met the inclusion criteria. Bisphosphonates were used in 57 studies, denosumab in two, and sunitinib and bevacizumab in one. Zoledronate was the most commonly used nitrogen-containing bisphosphonate. The only non-nitrogen-containing bisphosphonate studied was clodronate. The most frequently tested tissues were gingival fibroblasts, oral keratinocytes, and alveolar osteoblasts. These drugs caused a decrease in cell proliferation, viability, and migration. CONCLUSIONS Antiresorptive and antiangiogenic drugs displayed cytotoxic effects in a dose and time-dependent manner. Additional research is required to further elucidate the pathways of MRONJ.
Collapse
Affiliation(s)
- Robert H Guirguis
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Leonard P Tan
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Rebecca M Hicks
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Aniqa Hasan
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Tina D Duong
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Xia Hu
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Jordan Y S Hng
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Mohammad H Hadi
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Henry C Owuama
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Tamara Matthyssen
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Federica Canfora
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
8
|
Zhao N, Li QX, Wang YF, Qiao Q, Huang HY, Guo CB, Guo YX. Anti-angiogenic drug aggravates the degree of anti-resorptive drug-based medication-related osteonecrosis of the jaw by impairing the proliferation and migration function of gingival fibroblasts. BMC Oral Health 2023; 23:330. [PMID: 37245004 DOI: 10.1186/s12903-023-03034-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Long-term use of anti-resorptive or anti-angiogenic drugs in cancer patients with odontogenic infections may lead to medication-related osteonecrosis of the jaw (MRONJ). This study investigated whether anti-angiogenic agents aggravate MRONJ occurrence in anti-resorptive-treated patients. METHODS The clinical stage and jawbone exposure of MRONJ patients caused by different drug regimens were analyzed to ascertain the aggravation effect of anti-angiogenic drugs on anti-resorptive drug-based MRONJ. Next, a periodontitis mice model was established, and tooth extraction was performed after administering anti-resorptive and/or anti-angiogenic drugs; the imaging and histological change of the extraction socket were observed. Moreover, the cell function of gingival fibroblasts was analyzed after the treatment with anti-resorptive and/or anti-angiogenic drugs in order to evaluate their effect on the gingival tissue healing of the extraction socket. RESULTS Patients treated with anti-angiogenic and anti-resorptive drugs had an advanced clinical stage and a bigger proportion of necrotic jawbone exposure compared to patients treated with anti-resorptive drugs alone. In vivo study further indicated a greater loss of mucosa tissue coverage above the tooth extraction in mice treated with sunitinib (Suti) + zoledronate (Zole) group (7/10) vs. Zole group (3/10) and Suti group (1/10). Micro-computed tomography (CT) and histological data showed that the new bone formation in the extraction socket was lower in Suti + Zole and Zole groups vs. Suti and control groups. In vitro data showed that the anti-angiogenic drugs had a stronger inhibitory ability on the proliferation and migration function of gingival fibroblasts than anti-resorptive drugs, and the inhibitory effect was obviously enhanced after combining zoledronate and sunitinib. CONCLUSION Our findings provided support for a synergistic contribution of anti-angiogenic drugs to anti-resorptive drugs-based MRONJ. Importantly, the present study revealed that anti-angiogenic drugs alone do not induce severe MRONJ but aggravate the degree of MRONJ via the enhanced inhibitory function of gingival fibroblasts based on anti-resorptive drugs.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Qing-Xiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yi-Fei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Qiao Qiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Hong-Yuan Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Chuan-Bin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China.
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China.
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
| | - Yu-Xing Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie Haidian District, Beijing, 100081, PR China.
- National Clinical Research Center for Oral Diseases, Beijing, 100081, PR China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China.
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
| |
Collapse
|
9
|
Zheng Y, Dong X, Wang X, Wang J, Chen S, He Y, An J, He L, Zhang Y. Exosomes Derived from Adipose Tissue-Derived Mesenchymal Stromal Cells Prevent Medication-Related Osteonecrosis of the Jaw through IL-1RA. Int J Mol Sci 2023; 24:ijms24108694. [PMID: 37240036 DOI: 10.3390/ijms24108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/28/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a severe disease with unclear pathogenesis. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)s) serve as a special source for cell therapy. Herein, we explored whether exosomes (Exo) derived from MSC(AT)s promote primary gingival wound healing and prevent MRONJ. An MRONJ mice model was constructed using zoledronate (Zol) administration and tooth extraction. Exosomes were collected from the conditioned medium (CM) of MSC(AT)s (MSC(AT)s-Exo) and locally administered into the tooth sockets. Interleukin-1 receptor antagonist (IL-1RA)-siRNA was used to knock down the expression of IL-1RA in MSC(AT)s-Exo. Clinical observations, micro-computed tomography (microCT), and histological analysis were used to evaluate the therapeutic effects in vivo. In addition, the effect of exosomes on the biological behavior of human gingival fibroblasts (HGFs) was evaluated in vitro. MSC(AT)s-Exo accelerated primary gingival wound healing and bone regeneration in tooth sockets and prevented MRONJ. Moreover, MSC(AT)s-Exo increased IL-1RA expression and decreased interleukin-1 beta (IL-1β) and tumor necrosis factor-α (TNF-α) expression in the gingival tissue. The sequent rescue assay showed that the effects of preventing MRONJ in vivo and improving the migration and collagen synthesis abilities of zoledronate-affected HGFs in vitro were partially impaired in the IL-1RA-deficient exosome group. Our results indicated that MSC(AT)s-Exo might prevent the onset of MRONJ via an IL-1RA-mediated anti-inflammatory effect in the gingiva wound and improve the migration and collagen synthesis abilities of HGFs.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xian Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xinyu Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jie Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Shuo Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jingang An
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Linhai He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
10
|
Yalcin-Ülker GM, Günbatan M, Duygu G, Soluk-Tekkesin M, Özcakir-Tomruk C. Could Local Application of Hypoxia Inducible Factor 1-α Enhancer Deferoxamine Be Promising for Preventing of Medication-Related Osteonecrosis of the Jaw? Biomedicines 2023; 11:biomedicines11030758. [PMID: 36979736 PMCID: PMC10045901 DOI: 10.3390/biomedicines11030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
This experimental study investigates the prophylactic effect of deferoxamine (DFO) on medication-related osteonecrosis of the jaw (MRONJ). Thirty-six female Sprague Dawley rats received zoledronic acid (ZA) for eight weeks to create an osteonecrosis model. DFO was locally applied into the extraction sockets with gelatin sponge (GS) carriers to prevent MRONJ. The specimens were histopathologically and histomorphometrically evaluated. Hypoxia-inducible factor 1-alpha (HIF-1α) protein levels in the extraction sockets were quantified. New bone formation rate differed significantly between groups (p = 0.005). Newly formed bone ratios in the extraction sockets did not differ significantly between the control group and the GS (p = 1), GS/DFO (p = 0.749), ZA (p = 0.105), ZA-GS (p = 0.474), and ZA-GS/DFO (p = 1) groups. While newly formed bone rates were higher in the ZA-GS and ZA-GS/DFO groups than in the ZA group, the differences were not significant. HIF-1α levels differed significantly between groups (p < 0.001) and were significantly higher in the DFO and ZA-GS/DFO groups than in the control group (p = 0.001 and p = 0.004, respectively). While HIF-1α levels were higher in the ZA-GS/DFO group than in the ZA group, the difference was not significant. While HIF-1α protein levels and new bone formation rate were elevated in the DFO-treated group, the effect was not significant. Further large-scale studies are needed to understand DFO’s preventative effects on MRONJ and the role of HIF-1α in MRONJ pathogenesis.
Collapse
Affiliation(s)
- Gül Merve Yalcin-Ülker
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Istanbul Okan University, Istanbul 34947, Türkiye
- Correspondence: or
| | - Murat Günbatan
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Istanbul Okan University, Istanbul 34947, Türkiye
| | - Gonca Duygu
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tekirdag Namık Kemal University, Tekirdag 59030, Türkiye
| | - Merva Soluk-Tekkesin
- Department of Tumour Pathology, Institute of Oncology, Istanbul University, Istanbul 34093, Türkiye
| | - Ceyda Özcakir-Tomruk
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Yeditepe University, Istanbul 34728, Türkiye
| |
Collapse
|
11
|
Transplantation of Endothelial Progenitor Cells: Summary and prospect. Acta Histochem 2023; 125:151990. [PMID: 36587456 DOI: 10.1016/j.acthis.2022.151990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
Endothelial Progenitor Cells (EPCs) are precursor cells of endothelial cells (ECs), which can differentiate into vascular ECs, protect from endothelial dysfunction and tissue ischemia, and reduce vascular hyperplasia. Due to these functions, EPCs are used as a candidate cell source for transplantation strategies. In recent years, a great progress was achieved in EPCs biology research, and EPCs transplantation has become a research hotspot. At present, transplanted EPCs have been used to treat ischemic diseases due to their powerful vasculogenesis and beneficial paracrine effects. Although EPCs transplantation has been proved to play an important role, the clinical application of EPCs still faces many challenges. This review briefly summarized the basic characteristics of EPCs, the process of EPCs transplantation promoting the healing of ischemic tissue, and the ways to improve the efficiency of EPCs transplantation. In addition, the application of EPCs in neurological improvement, cardiovascular and respiratory diseases and the challenges and problems in clinical application of EPCs were also discussed. In the end, the application of EPCs transplantation in regenerative medicine and tissue engineering was discussed.
Collapse
|
12
|
Significance of medication discontinuation on bisphosphonate-related jaw osteonecrosis in a rat model. Sci Rep 2022; 12:21449. [PMID: 36509781 PMCID: PMC9744902 DOI: 10.1038/s41598-022-25347-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Bisphosphonate (BP) discontinuation has been advised as a measure to prevent the incidence of bisphosphonate-related osteonecrosis of the jaw (BRONJ), however, its efficacy remains controversial. This study aimed to analyze the efficacy of BP discontinuation in reducing BRONJ severity following tooth extraction in a rat model. Thirty-four male Sprague-Dawley rats were divided into two BRONJ model categories: oral administration (PO) of alendronate (1 mg/kg) for 3 and 8 weeks and intraperitoneal (IP) injection of pamidronate (3 mg/kg) and dexamethasone (1 mg/kg) for 20 days. The PO model was divided into five groups (a control group without BPs and four experimental groups with 1-week discontinuation). The IP model was divided into two groups consisting of group I (without discontinuation) and group II (1-week discontinuation). One molar from both sides of the mandible was extracted. After extraction, the PO models were sacrificed at 3 and 5 weeks, and the IP models were sacrificed either immediately or at 2, 4, 6, and 8 weeks. Micro-CT showed non-significant differences among PO groups but significant differences were observed between IP groups. Most bone remodeling parameters within group I of the IP model differed significantly (p-value < 0.05). Histologically, group I showed a significantly higher percentage of necrotic bone than group II (51.93 ± 12.75%, p < 0.05) and a higher number of detached osteoclasts in TRAP staining. With discontinuation of medication for at least 1 week in rats, the effects of BPs on alveolar bone are suppressed and bone turnover and osteoclast functions are restored.
Collapse
|
13
|
Kuroshima S, Al‐Omari FA, Sasaki M, Sawase T. Medication‐related osteonecrosis of the jaw: A literature review and update. Genesis 2022; 60:e23500. [DOI: 10.1002/dvg.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Farah A. Al‐Omari
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University Nagasaki Japan
| |
Collapse
|
14
|
Wang B, Zhan Y, Yan L, Hao D. How zoledronic acid improves osteoporosis by acting on osteoclasts. Front Pharmacol 2022; 13:961941. [PMID: 36091799 PMCID: PMC9452720 DOI: 10.3389/fphar.2022.961941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis is called a silent disease, because it is difficult to detect until comprehensive examinations for osteoporosis are performed or osteoporotic fractures occur. Zoledronic acid is currently the first-line anti-osteoporotic drug, with good efficacy and treatment compliance. A major advantage of zoledronic acid is that intravenous zoledronic acid often guarantees a therapeutic effect for up to 1 year after infusion. The reasons why zoledronic acid is effective in improving osteoporosis are that it can inhibit osteoclast differentiation and induce osteoclast apoptosis, thus suppressing bone resorption and increasing bone density. The story between zoledronic acid and osteoclasts has been written long time ago. Both the canonical receptor activator of the receptor activator of nuclear factor-κB ligand (RANKL) pathway and the non-canonical Wnt pathway are the main pathways by which zoledronic acid inhibits osteoclast differentiation. Farnesyl pyrophosphate synthase (FPPS), reactive oxygen species (ROS), and ferroptosis that was first proposed in 2012, are all considered to be closely associated with zoledronic acid-induced osteoclast apoptosis. Here, we provide a brief review of the recent progress on the study of zoledronic acid and osteoclasts, and hope to elaborate how zoledronic acid improves osteoporosis by acting on osteoclasts.
Collapse
Affiliation(s)
- Biao Wang
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
| | - Yi Zhan
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
- The Sceond Clinical Medical College of Shaanxi University of Chinese Medicine, Xi’an, China
| | - Liang Yan
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Dingjun Hao, ; Liang Yan,
| | - Dingjun Hao
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Dingjun Hao, ; Liang Yan,
| |
Collapse
|
15
|
Yan R, Jiang R, Hu L, Deng Y, Wen J, Jiang X. Establishment and assessment of rodent models of medication-related osteonecrosis of the jaw (MRONJ). Int J Oral Sci 2022; 14:41. [PMID: 35948539 PMCID: PMC9365764 DOI: 10.1038/s41368-022-00182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is primarily associated with administering antiresorptive or antiangiogenic drugs. Despite significant research on MRONJ, its pathogenesis and effective treatments are still not fully understood. Animal models can be used to simulate the pathophysiological features of MRONJ, serving as standardized in vivo experimental platforms to explore the pathogenesis and therapies of MRONJ. Rodent models exhibit excellent effectiveness and high reproducibility in mimicking human MRONJ, but classical methods cannot achieve a complete replica of the pathogenesis of MRONJ. Modified rodent models have been reported with improvements for better mimicking of MRONJ onset in clinic. This review summarizes representative classical and modified rodent models of MRONJ created through various combinations of systemic drug induction and local stimulation and discusses their effectiveness and efficiency. Currently, there is a lack of a unified assessment system for MRONJ models, which hinders a standard definition of MRONJ-like lesions in rodents. Therefore, this review comprehensively summarizes assessment systems based on published peer-review articles, including new approaches in gross observation, histological assessments, radiographic assessments, and serological assessments. This review can serve as a reference for model establishment and evaluation in future preclinical studies on MRONJ.
Collapse
Affiliation(s)
- Ran Yan
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ruixue Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Longwei Hu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuwei Deng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China. .,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China. .,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| |
Collapse
|
16
|
Yan F, Liu X, Ding H, Zhang W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem 2022; 124:151833. [PMID: 34929523 DOI: 10.1016/j.acthis.2021.151833] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) play an important role in repairing damaged blood vessels and promoting neovascularization. However, the specific mechanism of EPCs promoting vascular repair is still unclear. Currently, there are two different views on the repair of damaged vessels by EPCs, one is that EPCs can directly differentiate into endothelial cells (ECs) and integrate into injured vessels, the other is that EPCs act on cells and blood vessels by releasing paracrine substances. But more evidence now supports the latter. Therefore, the paracrine mechanisms of EPCs are worth further study. This review describes the substances secreted by EPCs, some applications based on paracrine effects of EPCs, and the studies of paracrine mechanisms in cardiovascular diseases--all of these are to support the view that EPCs repair blood vessels through paracrine effects rather than integrating directly into damaged vessels.
Collapse
Affiliation(s)
- Fanchen Yan
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaodan Liu
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Huang Ding
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wei Zhang
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
17
|
Aguirre JI, Castillo EJ, Kimmel DB. Preclinical models of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021; 153:116184. [PMID: 34520898 PMCID: PMC8743993 DOI: 10.1016/j.bone.2021.116184] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe adverse event affecting patients with cancer and patients with osteoporosis who have been treated with powerful antiresorptives (pARs) or angiogenesis inhibitors (AgIs). pARs, including nitrogen-containing bisphosphonates (N-BPs; e.g., zoledronic acid, alendronate) and anti-RANKL antibodies (e.g., denosumab), are used to manage bone metastases in patients with cancer or to prevent fragility fractures in patients with osteoporosis. Though significant advances have been made in understanding MRONJ, its pathophysiology is still not fully elucidated. Multiple species have been used in preclinical MRONJ research, including the rat, mouse, rice rat, rabbit, dog, sheep, and pig. Animal research has contributed immensely to advancing the MRONJ field, particularly, but not limited to, in developing models and investigating risk factors that were first observed in humans. MRONJ models have been developed using clinically relevant doses of systemic risk factors, like N-BPs, anti-RANKL antibodies, or AgIs. Specific local oral risk factors first noted in humans, including tooth extraction and inflammatory dental disease (e.g., periodontitis, periapical infection, etc.), were then added. Research in rodents, particularly the rat, and, to some extent, the mouse, across multiple laboratories, has contributed to establishing multiple relevant and complementary preclinical models. Models in larger species produced accurate clinical and histopathologic outcomes suggesting a potential role for confirming specific crucial findings from rodent research. We view the current state of animal models for MRONJ as good. The rodent models are now reliable enough to produce large numbers of MRONJ cases that could be applied in experiments testing treatment modalities. The course of MRONJ, including stage 0 MRONJ, is characterized well enough that basic studies of the molecular or enzyme-level findings in different MRONJ stages are possible. This review provides a current overview of the existing models of MRONJ, their more significant features and findings, and important instances of their application in preclinical research.
Collapse
Affiliation(s)
- J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| |
Collapse
|
18
|
Amler AK, Schlauch D, Tüzüner S, Thomas A, Neckel N, Tinhofer I, Heiland M, Lauster R, Kloke L, Stromberger C, Nahles S. Pilot investigation on the dose-dependent impact of irradiation on primary human alveolar osteoblasts in vitro. Sci Rep 2021; 11:19833. [PMID: 34615948 PMCID: PMC8494843 DOI: 10.1038/s41598-021-99323-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Radiotherapy of head and neck squamous cell carcinoma can lead to long-term complications like osteoradionecrosis, resulting in severe impairment of the jawbone. Current standard procedures require a 6-month wait after irradiation before dental reconstruction can begin. A comprehensive characterization of the irradiation-induced molecular and functional changes in bone cells could allow the development of novel strategies for an earlier successful dental reconstruction in patients treated by radiotherapy. The impact of ionizing radiation on the bone-forming alveolar osteoblasts remains however elusive, as previous studies have relied on animal-based models and fetal or animal-derived cell lines. This study presents the first in vitro data obtained from primary human alveolar osteoblasts. Primary human alveolar osteoblasts were isolated from healthy donors and expanded. After X-ray irradiation with 2, 6 and 10 Gy, cells were cultivated under osteogenic conditions and analyzed regarding their proliferation, mineralization, and expression of marker genes and proteins. Proliferation of osteoblasts decreased in a dose-dependent manner. While cells recovered from irradiation with 2 Gy, application of 6 and 10 Gy doses not only led to a permanent impairment of proliferation, but also resulted in altered cell morphology and a disturbed structure of the extracellular matrix as demonstrated by immunostaining of collagen I and fibronectin. Following irradiation with any of the examined doses, a decrease of marker gene expression levels was observed for most of the investigated genes, revealing interindividual differences. Primary human alveolar osteoblasts presented a considerably changed phenotype after irradiation, depending on the dose administered. Mechanisms for these findings need to be further investigated. This could facilitate improved patient care by re-evaluating current standard procedures and investigating faster and safer reconstruction concepts, thus improving quality of life and social integrity.
Collapse
Affiliation(s)
- Anna-Klara Amler
- Cellbricks GmbH, Berlin, Germany. .,Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany.
| | - Domenic Schlauch
- Cellbricks GmbH, Berlin, Germany.,Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Selin Tüzüner
- Cellbricks GmbH, Berlin, Germany.,Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Alexander Thomas
- Cellbricks GmbH, Berlin, Germany.,Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Norbert Neckel
- Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin, Germany
| | - Roland Lauster
- Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Carmen Stromberger
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
19
|
Kim J, Yeon A, Parker SJ, Shahid M, Thiombane A, Cho E, You S, Emam H, Kim DG, Kim M. Alendronate-induced Perturbation of the Bone Proteome and Microenvironmental Pathophysiology. Int J Med Sci 2021; 18:3261-3270. [PMID: 34400895 PMCID: PMC8364444 DOI: 10.7150/ijms.61552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/11/2021] [Indexed: 11/05/2022] Open
Abstract
Objectives: Bisphosphonates (BPs) are powerful inhibitors of osteoclastogenesis and are used to prevent osteoporotic bone loss and reduce the risk of osteoporotic fracture in patients suffering from postmenopausal osteoporosis. Patients with breast cancer or gynecological malignancies being treated with BPs or those receiving bone-targeted therapy for metastatic prostate cancer are at increased risk of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Although BPs markedly ameliorate osteoporosis, their adverse effects largely limit the clinical application of these drugs. This study focused on providing a deeper understanding of one of the most popular BPs, the alendronate (ALN)-induced perturbation of the bone proteome and microenvironmental pathophysiology. Methods: To understand the molecular mechanisms underlying ALN-induced side-effects, an unbiased and global proteomics approach combined with big data bioinformatics was applied. This was followed by biochemical and functional analyses to determine the clinicopathological mechanisms affected by ALN. Results: The findings from this proteomics study suggest that the RIPK3/Wnt/GSK3/β-catenin signaling pathway is significantly perturbed upon ALN treatment, resulting in abnormal angiogenesis, inflammation, anabolism, remodeling, and mineralization in bone cells in an in vitro cell culture system. Conclusion: Our investigation into potential key signaling mechanisms in response to ALN provides a rational basis for suppressing BP-induced adverse effect and presents various therapeutic strategies.
Collapse
Affiliation(s)
- Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, CA, USA
| | - Austin Yeon
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sarah J. Parker
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Muhammad Shahid
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aissatou Thiombane
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eunho Cho
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hany Emam
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Do-Gyoon Kim
- Division of Oral Surgery, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
20
|
Zhang W, Gao L, Ren W, Li S, Zheng J, Li S, Jiang C, Yang S, Zhi K. The Role of the Immune Response in the Development of Medication-Related Osteonecrosis of the Jaw. Front Immunol 2021; 12:606043. [PMID: 33717086 PMCID: PMC7947359 DOI: 10.3389/fimmu.2021.606043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse drug effect. There are multiple hypotheses to explain the development of MRONJ. Reduced bone remodeling and infection or inflammation are considered central to the pathogenesis of MRONJ. In recent years, increasing evidence has shown that bisphosphonates (BPs)-mediated immunity dysfunction is associated with the pathophysiology of MRONJ. In a healthy state, mucosal immunity provides the first line of protection against pathogens and oral mucosal immune cells defense against potentially invading pathogens by mediating the generation of protective immunoinflammatory responses. In addition, the immune system takes part in the process of bone remodeling and tissue repair. However, the treatment of BPs disturbs the mucosal and osteo immune homeostasis and thus impairs the body's ability to resist infection and repair from injury, thereby adding to the development of MRONJ. Here, we present the current knowledge about immunity dysfunction to shed light on the role of local immune disorder in the development of MRONJ.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zheng
- Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Li
- Department of Stomatology, Binzhou People'Hospital, Binzhou, China
| | - Chunmiao Jiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuying Yang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Nakagawa T, Tsuka S, Aonuma F, Nodai T, Munemasa T, Tamura A, Mukaibo T, Kondo Y, Masaki C, Hosokawa R. Effects of metformin on the prevention of bisphosphonate-related osteonecrosis of the jaw-like lesions in rats. J Prosthodont Res 2020; 65:219-224. [PMID: 32938854 DOI: 10.2186/jpr.jpor_2019_629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE In this study, we aimed to investigate the effect of glucose metabolism on bone healing after tooth extraction in an osteoporosis rat model administered zoledronic acid (ZA) and dexamethasone (DX). METHODS In total, 24 male Wistar rats (4 weeks old) were randomly assigned to four groups: Control (subcutaneous physiological saline), ZD (subcutaneous ZA and DX twice a week), Ins+ZD (subcutaneous insulin followed by ZD treatment), and Met+ZD (oral metformin followed by ZD treatment). Blood was collected every two weeks . Two weeks after treatment initiation, the first molar tooth on the right maxilla was extracted from all rats. Four weeks later, the rats were sacrificed, and bone healing was assessed. Maxillae samples were fixed and scanned using micro-computed tomography for quantifying areas of bone defects. Hematoxylin-eosin and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate bone apoptosis and osteoclast number. RESULTS In all experimental groups, body weight was statistically lower than that in the Control group, with no changes observed in uncarboxylated osteocalcin concentrations. The radiological analysis revealed that insulin or metformin administration improved healing in the tooth extraction socket (p < 0.01). Histological examination revealed that the osteonecrosis area was reduced in the Ins+ZD and Met+ZD groups (p < 0.01). TRAP staining presented increased osteoclast numbers in the ZD group when compared with that observed in the Control. CONCLUSIONS Tooth extraction with long-term ZA and DX administration inhibited bone remodeling and induced bisphosphonate-related osteonecrosis of the jaw-like lesions. Metformin exerted protective effects ag ainst osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Tomohito Nakagawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Shintaro Tsuka
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Fumiko Aonuma
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Akiko Tamura
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka
| |
Collapse
|
22
|
Doppelt O, Cohen G, Tamari T, Elimelech R, Sabbah N, Zigdon-Giladi H. Endothelial progenitors increase vascularization and improve fibroblasts function that prevent medication-related osteonecrosis of the jaw. Oral Dis 2020; 26:1523-1531. [PMID: 32400918 DOI: 10.1111/odi.13412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/22/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES In a previous rat model, MRONJ occurrence was 50%. Our aim was to investigate the potential of endothelial progenitor cells (EPCs) to improve fibroblasts function and prevent MRONJ. METHODS Human gingival fibroblasts were cultured with EPC-conditioned media (EPC-CM); endothelial growth media (EGM-2) or DMEM followed by incubation with 10 µM zoledronic (ZOL) and dexamethasone (DEX). Cell proliferation and migration were assessed by XTT and scratch wound healing assays. In vivo, ten Lewis rats were treated weekly with ZOL and DEX for 11 weeks. After a week, EPCs or EGM-2 were injected to the gingiva around the molars. At 3 weeks, bilateral molars were extracted. After 8 weeks, wound healing was assessed, and serum VEGF and blood vessels were quantified. RESULTS ZOL/DEX significantly reduced fibroblasts proliferation and wound healing. Treatment with EPC-CM before ZOL/DEX improved cell proliferation, and scratch healing (p = .007, p = .023). In vivo, local EPC injection before tooth extraction increased serum VEGF (p = .01) and soft tissue vascularization (p = .05). Normal healing was similar (80%) in EPCs and EGM-2 groups. CONCLUSION EPC rescued fibroblasts from the cytotoxic effect of ZOL/DEX and elevated serum VEGF and vessel density that might reduce MRONJ occurrence to 20% compared to 50% in a similar model.
Collapse
Affiliation(s)
- Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gal Cohen
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Rina Elimelech
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Nadin Sabbah
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|