1
|
Li J, Kang W, Wang X, Pan F. Progress in treatment of pathological neuropathic pain after spinal cord injury. Front Neurol 2024; 15:1430288. [PMID: 39606699 PMCID: PMC11600731 DOI: 10.3389/fneur.2024.1430288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Pathological neuropathic pain is a common complication following spinal cord injury. Due to its high incidence, prolonged duration, tenacity, and limited therapeutic efficacy, it has garnered increasing attention from both basic researchers and clinicians. The pathogenesis of neuropathic pain after spinal cord injury is multifaceted, involving factors such as structural and functional alterations of the central nervous system, pain signal transduction, and inflammatory effects, posing significant challenges to clinical management. Currently, drugs commonly employed in treating spinal cord injury induced neuropathic pain include analgesics, anticonvulsants, antidepressants, and antiepileptics. However, a subset of patients often experiences suboptimal therapeutic responses or severe adverse reactions. Therefore, emerging treatments are emphasizing a combination of pharmacological and non-pharmacological approaches to enhance neuropathic pain management. We provide a comprehensive review of past literature, which aims to aim both the mechanisms and clinical interventions for pathological neuropathic pain following spinal cord injury, offering novel insights for basic science research and clinical practice in spinal cord injury treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Xuanwu Jinan Hospital, Jinan, China
| | - Wenqing Kang
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xi Wang
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fang Pan
- Department of rehabilitation, Shandong Rehabilitation Hospital, Jinan, Shandong, China
| |
Collapse
|
2
|
Gillespie ER, Grice LF, Courtney IG, Lao HW, Jung W, Ramkomuth S, Xie J, Brown DA, Walsham J, Radford KJ, Nguyen QH, Ruitenberg MJ. Single-cell RNA sequencing reveals peripheral blood leukocyte responses to spinal cord injury in mice with humanised immune systems. J Neuroinflammation 2024; 21:63. [PMID: 38429643 PMCID: PMC10908016 DOI: 10.1186/s12974-024-03048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
Next-generation humanised mouse models and single-cell RNA sequencing (scRNAseq) approaches enable in-depth studies into human immune cell biology. Here we used NSG-SGM3 mice engrafted with human umbilical cord haematopoietic stem cells to investigate how human immune cells respond to and/or are changed by traumatic spinal cord injury (SCI). We hypothesised that the use of such mice could help advance our understanding of spinal cord injury-induced immune depression syndrome (SCI-IDS), and also how human leukocytes change as they migrate from the circulation into the lesion site. Our scRNAseq experiments, supplemented by flow cytometry, demonstrate the existence of up to 11 human immune cell (sub-) types and/or states across the blood and injured spinal cord (7 days post-SCI) of humanised NSG-SGM3 mice. Further comparisons of human immune cell transcriptomes between naïve, sham-operated and SCI mice identified a total of 579 differentially expressed genes, 190 of which were 'SCI-specific' (that is, genes regulated only in response to SCI but not sham surgery). Gene ontology analysis showed a prominent downregulation of immune cell function under SCI conditions, including for T cell receptor signalling and antigen presentation, confirming the presence of SCI-IDS and the transcriptional signature of human leukocytes in association with this phenomenon. We also highlight the activating influence of the local spinal cord lesion microenvironment by comparing the transcriptomes of circulating versus infiltrated human immune cells; those isolated from the lesion site were enriched for genes relating to both immune cell activity and function (e.g., oxidative phosphorylation, T cell proliferation and antigen presentation). We lastly applied an integrated bioinformatics approach to determine where immune responses in humanised NSG-SGM3 mice appear congruent to the native responses of human SCI patients, and where they diverge. Collectively, our study provides a valuable resource and methodological framework for the use of these mice in translational research.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura F Grice
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Isabel G Courtney
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hong Wa Lao
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Woncheol Jung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sonny Ramkomuth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jacky Xie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David A Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, Australia
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Institute for Clinical Pathology, New South Wales Health Pathology, Sydney, Australia
| | - James Walsham
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, Australia
- Medical School, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Quan H Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
3
|
Guntermann A, Marcus K, May C. The good or the bad: an overview of autoantibodies in traumatic spinal cord injury. Biol Chem 2024; 405:79-89. [PMID: 37786927 DOI: 10.1515/hsz-2023-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Infections remain the most common cause of death after traumatic spinal cord injury, likely due to a developing immune deficiency syndrome. This, together with a somewhat contradictory development of autoimmunity in many patients, are two major components of the maladaptive systemic immune response. Although the local non-resolving inflammation in the lesioned spinal cord may lead to an antibody formation against autoantigens of the injured spinal cord tissue, there are also natural (pre-existing) autoantibodies independent of the injury. The way in which these autoantibodies with different origins affect the neuronal and functional outcome of spinal cord-injured patients is still controversial.
Collapse
Affiliation(s)
- Annika Guntermann
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| | - Katrin Marcus
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| | - Caroline May
- Medical Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, ProDi E2.233, Ruhr University Bochum, Gesundheitscampus 4, D-44801 Bochum, Germany
| |
Collapse
|
4
|
Gómez-Lahoz AM, Girón SH, Sanz JM, Fraile-Martínez O, Garcia-Montero C, Jiménez DJ, de Leon-Oliva D, Ortega MA, Atienza-Perez M, Diaz D, Lopez-Dolado E, Álvarez-Mon M. Abnormal Characterization and Distribution of Circulating Regulatory T Cells in Patients with Chronic Spinal Cord Injury According to the Period of Evolution. BIOLOGY 2023; 12:biology12040617. [PMID: 37106817 PMCID: PMC10135522 DOI: 10.3390/biology12040617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a progressive and complex neurological disorder accompanied by multiple systemic challenges. Peripheral immune dysfunction is a major event occurring after SCI, especially in its chronic phase. Previous works have demonstrated significant changes in different circulating immune compartments, including in T cells. However, the precise characterization of these cells remains to be fully unraveled, particularly when considering important variants such as the time since the initial injury. In the present work, we aimed to study the level of circulating regulatory T cells (Tregs) in SCI patients depending on the duration of evolution. For this purpose, we studied and characterized peripheral Tregs from 105 patients with chronic SCI using flow cytometry, with patients classified into three major groups depending on the time since initial injury: short period chronic (SCI-SP, <5 years since initial injury); early chronic (SCI-ECP, from 5-15 years post-injury) and late chronic SCI (SCI-LCP, more than 15 years post-injury. Our results show that both the SCI-ECP and SCI-LCP groups appeared to present increased proportions of CD4+ CD25+/low Foxp3+ Tregs in comparison to healthy subjects, whereas a decreased number of these cells expressing CCR5 was observed in SCI-SP, SCI-ECP, and SCI-LCP patients. Furthermore, an increased number of CD4+ CD25+/high/low Foxp3 with negative expression of CD45RA and CCR7 was observed in SCI-LCP patients when compared to the SCI-ECP group. Taken together, these results deepen our understanding of the immune dysfunction reported in chronic SCI patients and how the time since initial injury may drive this dysregulation.
Collapse
Affiliation(s)
- Ana M Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro Girón
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat Sanz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego J Jiménez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mar Atienza-Perez
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - David Diaz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Elisa Lopez-Dolado
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Service of Internal Medicine and Immune System Diseases-Rheumatology, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
5
|
Spinal cord injury in mice impacts central and peripheral pathology in a severity-dependent manner. Pain 2021; 163:1172-1185. [PMID: 34490852 DOI: 10.1097/j.pain.0000000000002471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is a common medical complication experienced by those living with spinal cord injury (SCI) and leads to worsened quality of life. The pathophysiology of SCI pain is poorly understood, hampering the development of safe and efficacious therapeutics. We therefore sought to develop a clinically relevant model of SCI with a strong pain phenotype and characterize the central and peripheral pathology after injury. A contusion (50 kdyn) injury, with and without sustained compression (60 seconds) of the spinal cord, was carried out on female C57BL/6J mice. Mice with compression of the spinal cord exhibited significantly greater heat and mechanical hypersensitivity starting at 7 days post-injury, concomitant with reduced locomotor function, compared to those without compression. Immunohistochemical analysis of spinal cord tissue revealed significantly less myelin sparing and increased macrophage activation in mice with compression compared to those without. As measured by flow cytometry, immune cell infiltration and activation were significantly greater in the spinal cord (phagocytic myeloid cells and microglia) and dorsal root ganglia (Ly6C+ monocytes) following compression injury. We also decided to investigate the gastrointestinal microbiome, as it has been shown to be altered in SCI patients and has recently been shown to play a role in immune system maturation and pain. We found increased dysbiosis of the gastrointestinal microbiome in an injury severity-dependent manner. The use of this contusion-compression model of SCI may help advance the preclinical assessment of acute and chronic SCI pain and lead to a better understanding of mechanisms contributing to this pain.
Collapse
|
6
|
Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A. Neurogenesis after Spinal Cord Injury: State of the Art. Cells 2021; 10:cells10061499. [PMID: 34203611 PMCID: PMC8232196 DOI: 10.3390/cells10061499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis in the adult state is the process of new neuron formation. This relatively infrequent phenomenon comprises four stages: cell proliferation, cell migration, differentiation, and the integration of these cells into an existing circuit. Recent reports suggest that neurogenesis can be found in different regions of the Central Nervous System (CNS), including the spinal cord (SC). This process can be observed in physiological settings; however, it is more evident in pathological conditions. After spinal cord injury (SCI), the activation of microglial cells and certain cytokines have shown to exert different modulatory effects depending on the presence of inflammation and on the specific region of the injury site. In these conditions, microglial cells and cytokines are considered to play an important role in the regulation of neurogenesis after SCI. The purpose of this article is to present an overview on neural progenitor cells and neurogenic and non-neurogenic zones as well as the cellular and molecular regulation of neurogenesis. Additionally, we will briefly describe the recent advances in the knowledge of neurogenesis after SCI.
Collapse
|
7
|
Abstract
Growing evidence implicates the renin-angiotensin system (RAS) in multiple facets of neuropathic pain (NP). This narrative review focuses primarily on the major bioactive RAS peptide, Angiotensin II (Ang II), and its receptors, namely type 1 (AT1R) and type 2 (AT2R). Both receptors are involved in the development of NP and represent potential therapeutic targets. We first discuss the potential role of Ang II receptors in modulation of NP in the central nervous system. Ang II receptor expression is widespread in circuits associated with the perception and modulation of pain, but more studies are required to fully characterize receptor distribution, downstream signaling, and therapeutic potential of targeting the central nervous system RAS in NP. We then describe the peripheral neuronal and nonneuronal distribution of the RAS, and its contribution to NP. Other RAS modulators (such as Ang (1-7)) are briefly reviewed as well. AT1R antagonists are analgesic across different pain models, including NP. Several studies show neuronal protection and outgrowth downstream of AT2R activation, which may lead to the use of AT2R agonists in NP. However, blockade of AT2R results in analgesia. Furthermore, expression of the RAS in the immune system and a growing appreciation of neuroimmune crosstalk in NP add another layer of complexity and therapeutic potential of targeting this pathway. A growing number of human studies also hint at the analgesic potential of targeting Ang II signaling. Altogether, Ang II receptor signaling represents a promising, far-reaching, and novel strategy to treat NP.
Collapse
|
8
|
An N, Yang J, Wang H, Sun S, Wu H, Li L, Li M. Mechanism of mesenchymal stem cells in spinal cord injury repair through macrophage polarization. Cell Biosci 2021; 11:41. [PMID: 33622388 PMCID: PMC7903655 DOI: 10.1186/s13578-021-00554-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Treatment and rehabilitation of spinal cord injury (SCI) is a major problem in clinical medicine. Modern medicine has achieved minimal progress in improving the functions of injured nerves in patients with SCI, mainly due to the complex pathophysiological changes that present after injury. Inflammatory reactions occurring after SCI are related to various functions of immune cells over time at different injury sites. Macrophages are important mediators of inflammatory reactions and are divided into two different subtypes (M1 and M2), which play important roles at different times after SCI. Mesenchymal stem cells (MSCs) are characterized by multi-differentiation and immunoregulatory potentials, and different treatments can have different effects on macrophage polarization. MSC transplantation has become a promising method for eliminating nerve injury caused by SCI and can help repair injured nerve tissues. Therapeutic effects are related to the induced formation of specific immune microenvironments, caused by influencing macrophage polarization, controlling the consequences of secondary injury after SCI, and assisting with function recovery. Herein, we review the mechanisms whereby MSCs affect macrophage-induced specific immune microenvironments, and discuss potential avenues of investigation for improving SCI treatment.
Collapse
Affiliation(s)
- Nan An
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The Second Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jiaxu Yang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hequn Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Shengfeng Sun
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hao Wu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
9
|
Nirasawa K, Hamada K, Naraki Y, Kikkawa Y, Sasaki E, Endo-Takahashi Y, Hamano N, Katagiri F, Nomizu M, Negishi Y. Development of A2G80 peptide-gene complex for targeted delivery to muscle cells. J Control Release 2021; 329:988-996. [PMID: 33091529 DOI: 10.1016/j.jconrel.2020.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
Therapeutic strategies based on antisense oligonucleotides and therapeutic genes are being extensively investigated for the treatment of hereditary muscle diseases and hold great promise. However, the cellular uptake of these polyanions to the muscle cells is inefficient. Therefore, it is necessary to develop more effective methods of gene delivery into the muscle tissue. The A2G80 peptide (VQLRNGFPYFSY) from the laminin α2 chain has high affinity for α-dystroglycan (α-DG) which is expressed on the membrane of muscle cells. In this study, we designed a peptide-modified A2G80 with oligoarginine and oligohistidine (A2G80-R9-H8), and prepared peptide/plasmid DNA (pDNA) complex, to develop an efficient gene delivery system for the muscle tissue. The peptide/pDNA complex showed α-DG-dependent cellular uptake of the A2G80 sequence and significantly improved gene transfection efficiency mediated by the oligohistidine sequence in C2C12 myoblast cells. Further, the peptide/pDNA complex promoted efficient and sustained gene expression in the Duchenne muscular dystrophy mouse models. The A2G80-R9-H8 peptide has the potential for use as a specific carrier for targeting muscle in gene therapy in muscular dystrophy.
Collapse
Affiliation(s)
- Kei Nirasawa
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yukiko Naraki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Eri Sasaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nobuhito Hamano
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Fumihiko Katagiri
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
10
|
Carpenter RS, Marbourg JM, Brennan FH, Mifflin KA, Hall JCE, Jiang RR, Mo XM, Karunasiri M, Burke MH, Dorrance AM, Popovich PG. Spinal cord injury causes chronic bone marrow failure. Nat Commun 2020; 11:3702. [PMID: 32710081 PMCID: PMC7382469 DOI: 10.1038/s41467-020-17564-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.
Collapse
Affiliation(s)
- Randall S Carpenter
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jessica M Marbourg
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Katherine A Mifflin
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jodie C E Hall
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Roselyn R Jiang
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Xiaokui M Mo
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH, USA
| | - Malith Karunasiri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew H Burke
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Adrienne M Dorrance
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA.
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Diaz MF, Horton PD, Kumar A, Livingston M, Mohammadalipour A, Xue H, Skibber MA, Ewere A, Toledano Furman NE, Aroom KR, Zhang S, Gill BS, Cox CS, Wenzel PL. Injury intensifies T cell mediated graft-versus-host disease in a humanized model of traumatic brain injury. Sci Rep 2020; 10:10729. [PMID: 32612177 PMCID: PMC7330041 DOI: 10.1038/s41598-020-67723-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
The immune system plays critical roles in promoting tissue repair during recovery from neurotrauma but is also responsible for unchecked inflammation that causes neuronal cell death, systemic stress, and lethal immunodepression. Understanding the immune response to neurotrauma is an urgent priority, yet current models of traumatic brain injury (TBI) inadequately recapitulate the human immune response. Here, we report the first description of a humanized model of TBI and show that TBI places significant stress on the bone marrow. Hematopoietic cells of the marrow are regionally decimated, with evidence pointing to exacerbation of underlying graft-versus-host disease (GVHD) linked to presence of human T cells in the marrow. Despite complexities of the humanized mouse, marrow aplasia caused by TBI could be alleviated by cell therapy with human bone marrow mesenchymal stromal cells (MSCs). We conclude that MSCs could be used to ameliorate syndromes triggered by hypercytokinemia in settings of secondary inflammatory stimulus that upset marrow homeostasis such as TBI. More broadly, this study highlights the importance of understanding how underlying immune disorders including immunodepression, autoimmunity, and GVHD might be intensified by injury.
Collapse
Affiliation(s)
- Miguel F Diaz
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Paulina D Horton
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Akshita Kumar
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Megan Livingston
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Amina Mohammadalipour
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hasen Xue
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Max A Skibber
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Adesuwa Ewere
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Naama E Toledano Furman
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kevin R Aroom
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Songlin Zhang
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Charles S Cox
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Pamela L Wenzel
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|