1
|
Chen YC, Zheng G, Donner DG, Wright DK, Greenwood JP, Marwick TH, McMullen JR. Cardiovascular magnetic resonance imaging for sequential assessment of cardiac fibrosis in mice: technical advancements and reverse translation. Am J Physiol Heart Circ Physiol 2024; 326:H1-H24. [PMID: 37921664 PMCID: PMC11213480 DOI: 10.1152/ajpheart.00437.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Cardiovascular magnetic resonance (CMR) imaging has become an essential technique for the assessment of cardiac function and morphology, and is now routinely used to monitor disease progression and intervention efficacy in the clinic. Cardiac fibrosis is a common characteristic of numerous cardiovascular diseases and often precedes cardiac dysfunction and heart failure. Hence, the detection of cardiac fibrosis is important for both early diagnosis and the provision of guidance for interventions/therapies. Experimental mouse models with genetically and/or surgically induced disease have been widely used to understand mechanisms underlying cardiac fibrosis and to assess new treatment strategies. Improving the appropriate applications of CMR to mouse studies of cardiac fibrosis has the potential to generate new knowledge, and more accurately examine the safety and efficacy of antifibrotic therapies. In this review, we provide 1) a brief overview of different types of cardiac fibrosis, 2) general background on magnetic resonance imaging (MRI), 3) a summary of different CMR techniques used in mice for the assessment of cardiac fibrosis including experimental and technical considerations (contrast agents and pulse sequences), and 4) provide an overview of mouse studies that have serially monitored cardiac fibrosis during disease progression and/or therapeutic interventions. Clinically established CMR protocols have advanced mouse CMR for the detection of cardiac fibrosis, and there is hope that discovery studies in mice will identify new antifibrotic therapies for patients, highlighting the value of both reverse translation and bench-to-bedside research.
Collapse
Affiliation(s)
- Yi Ching Chen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - John P Greenwood
- Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Department of Cardiology, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
2
|
Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in Stimuli-Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200291. [PMID: 35306751 DOI: 10.1002/smll.202200291] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) describe abnormal vascular system conditions affecting the brain and heart. Among these, ischemic heart disease and ischemic stroke are the leading causes of death worldwide, resulting in 16% and 11% of deaths globally. Although several therapeutic approaches are presented over the years, the continuously increasing mortality rates suggest the need for more advanced strategies for their treatment. One of these strategies lies in the use of stimuli-responsive biomaterials. These "smart" biomaterials can specifically target the diseased tissue, and after "reading" the altered environmental cues, they can respond by altering their physicochemical properties and/or their morphology. In this review, the progress in the field of stimuli-responsive biomaterials for CCVDs in the last five years, aiming at highlighting their potential as early-stage therapeutics in the preclinical scenery, is described.
Collapse
Affiliation(s)
- Christos Tapeinos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Han Gao
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Tomás Bauleth-Ramos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
3
|
Celikkin N, Mastrogiacomo S, Dou W, Heerschap A, Oosterwijk E, Walboomers XF, Święszkowski W. In vitro and in vivo assessment of a 3D printable gelatin methacrylate hydrogel for bone regeneration applications. J Biomed Mater Res B Appl Biomater 2022; 110:2133-2145. [PMID: 35388573 DOI: 10.1002/jbm.b.35067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering (BTE) has made significant progress in developing and assessing different types of bio-substitutes. However, scaffolds production through standardized methods, as required for good manufacturing process (GMP), and post-transplant in vivo monitoring still limit their translation into the clinic. 3D printed 5% GelMA scaffolds have been prepared through an optimized and reproducible process in this work. Mesenchymal stem cells (MSC) were encapsulated in the 3D printable GelMA ink, and their biological properties were assessed in vitro to evaluate their potential for cell delivery application. Moreover, in vivo implantation of the pristine 3D printed GelMA has been performed in a rat condyle defect model. Whereas optimal tissue integration was observed via histology, no signs of fibrotic encapsulation or inhibited bone formation were attained. A multimodal imaging workflow based on computed tomography (CT) and magnetic resonance imaging (MRI) allowed the simultaneous monitoring of both new bone formation and scaffold degradation. These outcomes point out the direction to undertake in developing 3D printed-based hydrogels for BTE that can allow a faster transition into clinical use.
Collapse
Affiliation(s)
- Nehar Celikkin
- Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Simone Mastrogiacomo
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands.,Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Weiqiang Dou
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wojciech Święszkowski
- Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
4
|
Tiwari A, Elgrably B, Saar G, Vandoorne K. Multi-Scale Imaging of Vascular Pathologies in Cardiovascular Disease. Front Med (Lausanne) 2022; 8:754369. [PMID: 35071257 PMCID: PMC8766766 DOI: 10.3389/fmed.2021.754369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues. In cardiovascular diseases, when inflammation is sensed, endothelial cells adjust to the local or systemic inflammatory state. As the inflamed vasculature adjusts, changes in the endothelial cells lead to endothelial dysfunction, altered blood flow and permeability, expression of adhesion molecules, vessel wall inflammation, thrombosis, angiogenic processes, and extracellular matrix production at the endothelial cell level. Preclinical multi-scale imaging of these endothelial changes using optical, acoustic, nuclear, MRI, and multimodal techniques has progressed, due to technical advances and enhanced biological understanding on the interaction between immune and endothelial cells. While this review highlights biological processes that are related to changes in the cardiac vasculature during cardiovascular diseases, it also summarizes state-of-the-art vascular imaging techniques. The advantages and disadvantages of the different imaging techniques are highlighted, as well as their principles, methodologies, and preclinical and clinical applications with potential future directions. These multi-scale approaches of vascular imaging carry great potential to further expand our understanding of basic vascular biology, to enable early diagnosis of vascular changes and to provide sensitive diagnostic imaging techniques in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Betsalel Elgrably
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Katrien Vandoorne
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Perveen S, Rossin D, Vitale E, Rosso R, Vanni R, Cristallini C, Rastaldo R, Giachino C. Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. Int J Mol Sci 2021; 22:ijms222313054. [PMID: 34884856 PMCID: PMC8658014 DOI: 10.3390/ijms222313054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of heart-related deaths worldwide. Following MI, the hypoxic microenvironment triggers apoptosis, disrupts the extracellular matrix and forms a non-functional scar that leads towards adverse left ventricular (LV) remodelling. If left untreated this eventually leads to heart failure. Besides extensive advancement in medical therapy, complete functional recovery is never accomplished, as the heart possesses limited regenerative ability. In recent decades, the focus has shifted towards tissue engineering and regenerative strategies that provide an attractive option to improve cardiac regeneration, limit adverse LV remodelling and restore function in an infarcted heart. Acellular scaffolds possess attractive features that have made them a promising therapeutic candidate. Their application in infarcted areas has been shown to improve LV remodelling and enhance functional recovery in post-MI hearts. This review will summarise the updates on acellular scaffolds developed and tested in pre-clinical and clinical scenarios in the past five years with a focus on their ability to overcome damage caused by MI. It will also describe how acellular scaffolds alone or in combination with biomolecules have been employed for MI treatment. A better understanding of acellular scaffolds potentialities may guide the development of customised and optimised therapeutic strategies for MI treatment.
Collapse
Affiliation(s)
- Sadia Perveen
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
- Correspondence:
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| |
Collapse
|
6
|
Realizing tissue integration with supramolecular hydrogels. Acta Biomater 2021; 124:1-14. [PMID: 33508507 DOI: 10.1016/j.actbio.2021.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications.
Collapse
|