1
|
Liang Y, Chen Y, Lin Y, Huang W, Qiu Q, Sun C, Yuan J, Xu N, Chen X, Xu F, Shang X, Deng Y, Liu Y, Tan F, He C, Li J, Deng Q, Zhang X, Guan H, Liang Y, Fang X, Jiang X, Han L, Huang L, Yang Z. The increased tendency for anemia in traditional Chinese medicine deficient body constitution is associated with the gut microbiome. Front Nutr 2024; 11:1359644. [PMID: 39360281 PMCID: PMC11445043 DOI: 10.3389/fnut.2024.1359644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Background Constitution is a valuable part of traditional Chinese medicine theory; it is defined as the internal foundation for the occurrence, development, transformation and outcome of diseases, and has its characteristic gut microbiota. Previous study showed that deficiency constitution was related to lower Hb counts. However, no research has examined how alterations in the gut microbiome induced by deficiency constitution may increase the tendency for anemia. Methods We used a multiomics strategy to identify and quantify taxonomies and compounds found under deficient constitution individuals and further explore the possible pathological factors that affect red blood cell indices. Results ① People with deficient constitution showed lower hemoglobin (Hb), more Firmicutes, less Bacteroidetes, and higher α diversity. ② We identified Escherichia coli, Clostridium bolteae, Ruminococcus gnavus, Streptococcus parasanguinis and Flavonifractor plautii as potential biomarkers of deficient constitution. ③ Slackia piriformis, Clostridium_sp_L2_50 and Bacteroides plebeius were enriched in balanced-constitution individuals, and Parabacteroides goldsteinii was the key bacterial marker of balanced constitution. ④ Flavonifractor plautii may be a protective factor against the tendency for anemia among deficient individuals. ⑤ Ruminococcus gnavus may be the shared microbe base of deficiency constitution-related the tendency for anemia. ⑥ The microorganism abundance of the anaerobic phenotype was lower in deficient constitution group. ⑦ Alterations in the microbiome of deficient-constitution individuals were associated with worse health status and a greater risk of anemia, involving intestinal barrier function, metabolism and immune responses, regulated by short-chain fatty acids and bile acid production. Conclusion The composition of the gut microbiome was altered in people with deficient constitution, which may explain their poor health status and tendency toward anemia.
Collapse
Affiliation(s)
- Yuanjun Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanzhao Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wei Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinwei Qiu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chen Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiamin Yuan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ning Xu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xinyan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fuping Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Shang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yusheng Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanmin Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fei Tan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chunxiang He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiasheng Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinqin Deng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huahua Guan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yongzhu Liang
- Zhuhai Branch of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Xiaodong Fang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuanting Jiang
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Li Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhimin Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Oregano Oil Combined with Macleaya Cordata Oral Solution Improves the Growth Performance and Immune Response of Broilers. Animals (Basel) 2022; 12:ani12182480. [PMID: 36139338 PMCID: PMC9495209 DOI: 10.3390/ani12182480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Developing safe and effective antibiotic growth promoters (AGPs) substitutes is particularly important to improve animal health and production performance. As an essential plant oil, the oregano oil's main bioactive substance is carvacrol, which has been proven to have antioxidant, anti-inflammatory, antibacterial, and antiviral properties. The sanguinarine from macleaya cordata is the primary bioactive substance. Sanguinarine has anti-tumor, immune-enhancing, antibacterial, and anti-inflammatory effects. However, it has not been reported whether the compatibility of oregano oil and macleaya cordata extract could produce better results. This study is the first to report the effect of oregano oil combined with macleaya cordata oral solution on the growth of broilers. The oregano oil combined with macleaya cordata oral solution significantly improved the growth performance of broilers. At the same time, serum biochemical indices, serum antioxidant indices, serum immune indices, serum cytokines, and intestinal morphology were significantly improved. In summary, our results demonstrated that the mixed solution of oregano oil and macleaya cordata has substantial potential to be an alternative to AGPs for broilers to reduce costs and improve benefits. This study provides basic data and technical support for further research. Abstract The abuse of AGPs in animal husbandry has led to severe problems such as drug resistance and ecological, and environmental destruction, which seriously threaten human health and public health security. In recent years, extracts of oregano oil and macleaya cordata have become a hot spot in the research and application of AGP substitutes for their safety and high efficiency. This study is the first to report the effect of oregano oil combined with macleaya cordata oral solution on broiler growth performance. A total of 960 one-day-old broiler chickens were randomly divided into four treatment groups (240 chickens per group). Each treatment group was divided into six replicate groups (40 birds per replicate group). There were four groups in this study: the solvent control group, the oregano essential oil combined with macleaya cordata extract oral solution group (OS group), the oregano essential oil oral solution group (OEO group), and the macleaya cordata extract oral solution group (MCE group). Two chickens from each replicate group were collected and mixed into a composite sample. Six composite samples were obtained for each treatment group. The results showed that the oregano oil combined with macleaya cordata oral solution significantly improved the growth performance of broiler chickens. At the same time, serum biochemical indices, serum antioxidant indices, serum immune indices, serum cytokines, and intestinal morphology were significantly improved by the OS group. This study shows that oregano oil combined with macleaya cordata oral solution has substantial potential to be an alternative to AGPs for broilers.
Collapse
|
3
|
Ficus pandurata Hance Inhibits Ulcerative Colitis and Colitis-Associated Secondary Liver Damage of Mice by Enhancing Antioxidation Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2617881. [PMID: 34966476 PMCID: PMC8710911 DOI: 10.1155/2021/2617881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD), a global disease threatening human health, is commonly accompanied by secondary liver damage (SLD) mediated by the gut-liver axis. Oxidative stress acts a critical role in the onset of IBD, during which excessive oxidation would destroy the tight junctions between intestinal cells, promote proinflammatory factors to penetrate, and thereby damage the intestinal mucosa. Ficus pandurata Hance (FPH) is widely used for daily health care in South China. Our previous study showed that FPH protected acute liver damage induced by alcohol. However, there is no study reporting FPH treating ulcerative colitis (UC). This study is designed to investigate whether FPH could inhibit UC and reveal its potential mechanism. The results showed that FPH significantly alleviated the UC disease symptoms including the body weight loss, disease activity index (DAI), stool consistency changing, rectal bleeding, and colon length loss of UC mice induced by dextran sulfate sodium (DSS) and reversed the influences of DSS on myeloperoxidase (MPO) and diamine oxidase activity (DAO). FPH suppressed UC via inhibiting the TLR4/MyD88/NF-κB pathway and strengthened the gut barrier of mice via increasing the expressions of ZO-1 and occludin and enhancing the colonic antioxidative stress property by increasing the levels of T-SOD and GSH-Px and the expressions of NRF2, HO-1, and NQO1 and reducing MDA level and Keap1, p22-phox, and NOX2 expressions. Furthermore, FPH significantly inhibited SLD related to colitis by reducing the abnormal levels of the liver index, ALT, AST, and cytokines including TNFα, LPS, LBP, sCD14, and IL-18 in the livers, as well as decreasing the protein expressions of NLRP3, TNFα, LBP, CD14, TLR4, MyD88, NF-κB, and p-NF-κB, suggesting that FPH alleviated UC-related SLD via suppressing inflammation mediated by inhibiting the TLR4/MyD88/NF-κB pathway. Our study firstly investigates the anticolitis pharmacological efficacy of FPH, suggesting that it can be enlarged to treat colitis and colitis-associated liver diseases in humans.
Collapse
|
4
|
Ye Y, Wu J, Quan J, Ding R, Yang M, Wang X, Zhou S, Zhuang Z, Huang S, Gu T, Hong L, Zheng E, Wu Z, Yang J. Lipids and organic acids in three gut locations affect feed efficiency of commercial pigs as revealed by LC-MS-based metabolomics. Sci Rep 2021; 11:7746. [PMID: 33833350 PMCID: PMC8032704 DOI: 10.1038/s41598-021-87322-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
Feed efficiency (FE) is an important economic indicator in pig production. Improving the FE of commercial pigs is an important strategy for minimizing pig production costs and providing sustainability to the pig industry. In this study, nontargeted LC–MS metabolomics was performed on the contents of the three intestine segments (ileum, cecum and colon) of high-FE and low-FE pigs to explore the effects of small-molecule metabolites in pig intestine on pig FE. A total of 225 Duroc × (Landrace × Yorkshire) pigs in the 30–100 kg stage were sorted based on FE, and 20 pigs with extreme phenotypes were selected, with 10 in each group. A total of 749 metabolites were identified, of which 15, 38 and 11 differed between high-FE and low-FE pigs in ileum, cecum and colon, respectively. These candidate biomarkers mainly comprised lipids and organic acids, which could partially explain the FE difference between the two groups. Among the identified differential metabolites, the lipids are mainly involved in combatting inflammation and oxidation in the ileum and cecum and in bile acid metabolism and vitamin D absorption in the cecum. A difference in organic acids was mainly observed in the hindgut, which is involved in the metabolism of amino acids and fatty acids. This comprehensive study provides new insight into the biochemical mechanisms associated with pig FE.
Collapse
Affiliation(s)
- Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, China
| | - Ming Yang
- Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Sixiu Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Lingjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China. .,Guangdong Wens Breeding Swine Technology Co., Ltd., Guangdong, 527400, China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Microbiotal characteristics colonized in intestinal mucosa of mice with diarrhoea and repeated stress. 3 Biotech 2020; 10:372. [PMID: 32832332 DOI: 10.1007/s13205-020-02368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
To understand the role of intestinal mucosal microbiota on mental stress-related diarrhoea, we collected the intestinal mucosa of mice treated with Folium senna extract gavage combined with restraint and tail pinch stress for 7 days; and intestinal mucosal microbiota characteristics were analyzed by 16S rRNA Pacbio SMRT gene full-length sequencing. The results showed that the diversity (i.e., alpha diversity including the Chao1, Simpson, ACE, and Shannon indices and beta diversity including the NMDS of weighted UniFrac distances) and composition of the microbial community in the intestinal mucosa of mice with diarrhoea and repeated stress changed significantly (P < 0.05). In the co-occurrence network, Staphylococcus sciuri and Escherichia fergusonii was identified as putative keystone species. Moreover, the characteristics of the intestinal microbial species was analyzed by LEfSe, Metastats, and group difference, and ten altered gut microbiota species can be used as characteristic microbes in the mice with diarrhoea and repeated stress: the abundances of Stigmatella aurantiaca, Candidatus arthromitus sp. SFB-mouse, Erythrobacter gaetbuli, Desulfitobacterium hafniense, Ochrobactrum pituitosum, and Candidatus arthromitus sp. SFB-mouse-NL in the model group were significantly lower than those in the control group (P < 0.05); whereas Microbacterium dextranolyticum, Klebsiella pneumoniae, Escherichia sp. BBDP27, and Streptococcus danieliae were enriched in the control group (P < 0.05). Collectively, mental stress-related diarrhoea increased the intestinal microbiota diversity. The species associated with mental stress-related diarrhoea including Microbacterium dextranolyticum, Klebsiella pneumoniae, Escherichia sp. BBDP27, and Streptococcus danieliae were significantly enriched; while the species which are beneficial to mental stress-related diarrhoea are Stigmatella aurantiaca, Candidatus arthromitus sp. SFB-mouse, Erythrobacter gaetbuli, Desulfitobacterium hafniense, Ochrobactrum pituitosum, and Candidatus arthromitus sp. SFB-mouse-NL for its significantly depleted.
Collapse
|