1
|
da Silva Pereira ENG, Franco RLC, Santos RDCD, Daliry A. Statins and non-alcoholic fatty liver disease: A concise review. Biomed Pharmacother 2025; 183:117805. [PMID: 39755024 DOI: 10.1016/j.biopha.2024.117805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common hepatic manifestation of metabolic syndrome affecting 20-30 % of the adult population worldwide. This disease, which includes simple steatosis and non-alcoholic steatohepatitis, poses a significant risk for cardiovascular and metabolic diseases. Lifestyle modifications are crucial in the treatment of NAFLD; however, patient adherence remains challenging. As there is no specific treatment, drug repositioning is being researched as an alternative strategy. Statins, which are known for their cholesterol-lowering effects, are considered potential interventions for NAFLD. This review aimed to present the current understanding of the effects of statins on liver physiology in the context of NAFLD. The pathophysiology of NAFLD includes steatosis, inflammation, and fibrosis, which are exacerbated by dyslipidemia and insulin resistance. Statins, which inhibit 3-hydroxy-3-methylglutaryl-CoA reductase, have pleiotropic effects beyond cholesterol-lowering and affect pathways related to inflammation, fibrogenesis, oxidative stress, and microcirculation. Although clinical guidelines support the use of statins for dyslipidemia in patients with NAFLD, more studies are needed to demonstrate their efficacy in liver disease. This comprehensive review serves as a foundation for future studies on the therapeutic potential of statins in NAFLD.
Collapse
Affiliation(s)
| | - Rafaela Luiza Costa Franco
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Rafaele Dantas Cruz Dos Santos
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Liu J, Liu J, Mu W, Ma Q, Zhai X, Jin B, Liu Y, Zhang N. Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems. ACS NANO 2024; 18:20861-20885. [DOI: 10.1021/acsnano.4c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Jie Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Guixé-Muntet S, Quesada-Vázquez S, Gracia-Sancho J. Pathophysiology and therapeutic options for cirrhotic portal hypertension. Lancet Gastroenterol Hepatol 2024; 9:646-663. [PMID: 38642564 DOI: 10.1016/s2468-1253(23)00438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 04/22/2024]
Abstract
Portal hypertension represents the primary non-neoplastic complication of liver cirrhosis and has life-threatening consequences, such as oesophageal variceal bleeding, ascites, and hepatic encephalopathy. Portal hypertension occurs due to increased resistance of the cirrhotic liver vasculature to portal blood flow and is further aggravated by the hyperdynamic circulatory syndrome. Existing knowledge indicates that the profibrogenic phenotype acquired by sinusoidal cells is the initial factor leading to increased hepatic vascular tone and fibrosis, which cause increased vascular resistance and portal hypertension. Data also suggest that the phenotype of hepatic cells could be further impaired due to the altered mechanical properties of the cirrhotic liver itself, creating a deleterious cycle that worsens portal hypertension in the advanced stages of liver disease. In this Review, we discuss recent discoveries in the pathophysiology and treatment of cirrhotic portal hypertension, a condition with few pharmacological treatment options.
Collapse
Affiliation(s)
- Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergio Quesada-Vázquez
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Czyzynska-Cichon I, Giergiel M, Kwiatkowski G, Kurpinska A, Wojnar-Lason K, Kaczara P, Szymonski M, Lekka M, Kalvins I, Zapotoczny B, Chlopicki S. Protein disulfide isomerase A1 regulates fenestration dynamics in primary mouse liver sinusoidal endothelial cells (LSECs). Redox Biol 2024; 72:103162. [PMID: 38669864 PMCID: PMC11068635 DOI: 10.1016/j.redox.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Protein disulfide isomerases (PDIs) are involved in many intracellular and extracellular processes, including cell adhesion and cytoskeletal reorganisation, but their contribution to the regulation of fenestrations in liver sinusoidal endothelial cells (LSECs) remains unknown. Given that fenestrations are supported on a cytoskeleton scaffold, this study aimed to investigate whether endothelial PDIs regulate fenestration dynamics in primary mouse LSECs. PDIA3 and PDIA1 were found to be the most abundant among PDI isoforms in LSECs. Taking advantage of atomic force microscopy, the effects of PDIA1 or PDIA3 inhibition on the fenestrations in LSECs were investigated using a classic PDIA1 inhibitor (bepristat) and novel aromatic N-sulfonamides of aziridine-2-carboxylic acid derivatives as PDIA1 (C-3389) or PDIA3 (C-3399) inhibitors. The effect of PDIA1 inhibition on liver perfusion was studied in vivo using dynamic contrast-enhanced magnetic resonance imaging. Additionally, PDIA1 inhibitors were examined in vitro in LSECs for effects on adhesion, cytoskeleton organisation, bioenergetics, and viability. Inhibition of PDIA1 with bepristat or C-3389 significantly reduced the number of fenestrations in LSECs, while inhibition of PDIA3 with C-3399 had no effect. Moreover, the blocking of free thiols by the cell-penetrating N-ethylmaleimide, but not by the non-cell-penetrating 4-chloromercuribenzenesulfonate, resulted in LSEC defenestration. Inhibition of PDIA1 did not affect LSEC adhesion, viability, and bioenergetics, nor did it induce a clear-cut rearrangement of the cytoskeleton. However, PDIA1-dependent defenestration was reversed by cytochalasin B, a known fenestration stimulator, pointing to the preserved ability of LSECs to form new pores. Importantly, systemic inhibition of PDIA1 in vivo affected intra-parenchymal uptake of contrast agent in mice consistent with LSEC defenestration. These results revealed the role of intracellular PDIA1 in the regulation of fenestration dynamics in LSECs, and in maintaining hepatic sinusoid homeostasis.
Collapse
Affiliation(s)
- Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Magdalena Giergiel
- Jagiellonian University, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Faculty of Medicine, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Marek Szymonski
- Jagiellonian University, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Malgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Ivars Kalvins
- Laboratory of Carbofunctional Compounds, Latvian Institute of Organic Synthesis, LV-1006, Riga, Latvia
| | - Bartlomiej Zapotoczny
- Jagiellonian University, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Lojasiewicza 11, 30-348, Krakow, Poland; Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland.
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Faculty of Medicine, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
5
|
Pham N, Benhammou JN. Statins in Chronic Liver Disease: Review of the Literature and Future Role. Semin Liver Dis 2024; 44:191-208. [PMID: 38701856 DOI: 10.1055/a-2319-0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Chronic liver disease (CLD) is a major contributor to global mortality, morbidity, and healthcare burden. Progress in pharmacotherapeutic for CLD management is lagging given its impact on the global population. While statins are indicated for the management of dyslipidemia and cardiovascular disease, their role in CLD prevention and treatment is emerging. Beyond their lipid-lowering effects, their liver-related mechanisms of action are multifactorial and include anti-inflammatory, antiproliferative, and immune-protective effects. In this review, we highlight what is known about the clinical benefits of statins in viral and nonviral etiologies of CLD and hepatocellular carcinoma (HCC), and explore key mechanisms and pathways targeted by statins. While their benefits may span the spectrum of CLD and potentially HCC treatment, their role in CLD chemoprevention is likely to have the largest impact. As emerging data suggest that genetic variants may impact their benefits, the role of statins in precision hepatology will need to be further explored.
Collapse
Affiliation(s)
- Nguyen Pham
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jihane N Benhammou
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Veterans Affairs Greater Los Angeles, Los Angeles, California
- Comprehensive Liver Research Center at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
6
|
Zhang S, Ren X, Zhang B, Lan T, Liu B. A Systematic Review of Statins for the Treatment of Nonalcoholic Steatohepatitis: Safety, Efficacy, and Mechanism of Action. Molecules 2024; 29:1859. [PMID: 38675679 PMCID: PMC11052408 DOI: 10.3390/molecules29081859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver component of a cluster of conditions, while its subtype, nonalcoholic steatohepatitis (NASH), emerges as a potentially progressive liver disorder that harbors the risk of evolving into cirrhosis and culminating in hepatocellular carcinoma (HCC). NASH and cardiovascular disease (CVD) have common risk factors, but compared to liver-related causes, the most common cause of death in NASH patients is CVD. Within the pharmacological armamentarium, statins, celebrated for their lipid-modulating prowess, have now garnered attention for their expansive therapeutic potential in NASH. Evidence from a plethora of studies suggests that statins not only manifest anti-inflammatory and antifibrotic properties but also impart a multifaceted beneficial impact on hepatic health. In this review, we used "statin", "NAFLD", "NASH", and "CVD" as the major keywords and conducted a literature search using the PubMed and Web of Science databases to determine the safety and efficacy of statins in patients and animals with NASH and NAFLD, and the mechanism of statin therapy for NASH. Simultaneously, we reviewed the important role of the intestinal microbiota in statin therapy for NASH, as it is hoped that statins will provide new insights into modulating the harmful inflammatory microbiota in the gut and reducing systemic inflammation in NASH patients.
Collapse
Affiliation(s)
- Shiqin Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
| | - Xiaoling Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
| | - Bingzheng Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
| |
Collapse
|
7
|
Gao J, Zuo B, He Y. Liver sinusoidal endothelial cells as potential drivers of liver fibrosis (Review). Mol Med Rep 2024; 29:40. [PMID: 38240102 PMCID: PMC10828992 DOI: 10.3892/mmr.2024.13164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. It is a critical pre‑stage condition of severe hepatopathy, characterized by excessive accumulation of extracellular matrix components and ongoing chronic inflammation. To date, early prevention of liver fibrosis remains challenging. As the most abundant non‑parenchymal hepatic cell population, liver sinusoidal endothelial cells (LSECs) are stabilizers that maintain the intrahepatic environment. Notably, LSECs dysfunction appears to be implicated in the progression of liver fibrosis via numerous mechanisms. Following sustained liver injury, they lose their fenestrae (cytoplasmic pores) and change their crosstalk with other cellular interactions in the hepatic blood environment. LSEC‑targeted therapy has shown promising effects on fibrosis resolution, opening up new opportunities for anti‑fibrotic therapy. In light of this, the present study summarized changes in LSECs during liver fibrosis and their interactions with hepatic milieu, as well as possible therapeutic approaches that specially target LSECs.
Collapse
Affiliation(s)
- Jiaqin Gao
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Zuo
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yang He
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
8
|
Fernández-Iglesias A, Gracia-Sancho J. Role of liver sinusoidal endothelial cells in the diagnosis and treatment of liver diseases. SINUSOIDAL CELLS IN LIVER DISEASES 2024:467-481. [DOI: 10.1016/b978-0-323-95262-0.00023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Kwanten W(WJ, Francque SM. The liver sinusoid in chronic liver disease: NAFLD and NASH. SINUSOIDAL CELLS IN LIVER DISEASES 2024:263-284. [DOI: 10.1016/b978-0-323-95262-0.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Zhong X, Moresco JJ, Diedrich JK, Pinto AM, SoRelle JA, Wang J, Keller K, Ludwig S, Moresco EMY, Beutler B, Choi JH. Essential role of MFSD1-GLMP-GIMAP5 in lymphocyte survival and liver homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2314429120. [PMID: 38055739 PMCID: PMC10723049 DOI: 10.1073/pnas.2314429120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Antonio M. Pinto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Jeffrey A. SoRelle
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
11
|
Mitten EK, Portincasa P, Baffy G. Portal Hypertension in Nonalcoholic Fatty Liver Disease: Challenges and Paradigms. J Clin Transl Hepatol 2023; 11:1201-1211. [PMID: 37577237 PMCID: PMC10412712 DOI: 10.14218/jcth.2023.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 07/03/2023] Open
Abstract
Portal hypertension in cirrhosis is defined as an increase in the portal pressure gradient (PPG) between the portal and hepatic veins and is traditionally estimated by the hepatic venous pressure gradient (HVPG), which is the difference in pressure between the free-floating and wedged positions of a balloon catheter in the hepatic vein. By convention, HVPG≥10 mmHg indicates clinically significant portal hypertension, which is associated with adverse clinical outcomes. Nonalcoholic fatty liver disease (NAFLD) is a common disorder with a heterogeneous clinical course, which includes the development of portal hypertension. There is increasing evidence that portal hypertension in NAFLD deserves special considerations. First, elevated PPG often precedes fibrosis in NAFLD, suggesting a bidirectional relationship between these pathological processes. Second, HVPG underestimates PPG in NAFLD, suggesting that portal hypertension is more prevalent in this condition than currently believed. Third, cellular mechanoresponses generated early in the pathogenesis of NAFLD provide a mechanistic explanation for the pressure-fibrosis paradigm. Finally, a better understanding of liver mechanobiology in NAFLD may aid in the development of novel pharmaceutical targets for prevention and management of this disease.
Collapse
Affiliation(s)
- Emilie K. Mitten
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piero Portincasa
- Division of Internal Medicine and Department of Precision and Regenerative Medicine and Ionian Area, University ‘Aldo Moro’ Medical School, Bari, Italy
| | - György Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
12
|
Gil M, Khouri L, Raurell I, Rafael D, Andrade F, Abasolo I, Schwartz S, Martínez-Gómez M, Salcedo MT, Pericàs JM, Hide D, Wei M, Metanis N, Genescà J, Martell M. Optimization of Statin-Loaded Delivery Nanoparticles for Treating Chronic Liver Diseases by Targeting Liver Sinusoidal Endothelial Cells. Pharmaceutics 2023; 15:2463. [PMID: 37896223 PMCID: PMC11340786 DOI: 10.3390/pharmaceutics15102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we developed functionalized polymeric micelles (FPMs) loaded with simvastatin (FPM-Sim) as a drug delivery system to target liver sinusoidal endothelial cells (LSECs) for preserving liver function in chronic liver disease (CLD). Polymeric micelles (PMs) were functionalized by coupling peptide ligands of LSEC membrane receptors CD32b, CD36 and ITGB3. Functionalization was confirmed via spectroscopy and electron microscopy. In vitro and in vivo FPM-Sim internalization was assessed by means of flow cytometry in LSECs, hepatocytes, Kupffer and hepatic stellate cells from healthy rats. Maximum tolerated dose assays were performed in healthy mice and efficacy studies of FPM-Sim were carried out in bile duct ligation (BDL) and thioacetamide (TAA) induction rat models of cirrhosis. Functionalization with the three peptide ligands resulted in stable formulations with a greater degree of in vivo internalization in LSECs than non-functionalized PMs. Administration of FPM-Sim in BDL rats reduced toxicity relative to free simvastatin, albeit with a moderate portal-pressure-lowering effect. In a less severe model of TAA-induced cirrhosis, treatment with FPM-CD32b-Sim nanoparticles for two weeks significantly decreased portal pressure, which was associated with a reduction in liver fibrosis, lower collagen expression as well as the stimulation of nitric oxide synthesis. In conclusion, CD32b-FPM stands out as a good nanotransporter for drug delivery, targeting LSECs, key inducers of liver injury.
Collapse
Affiliation(s)
- Mar Gil
- Liver Disease Group, Liver Unit, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, Universitat Autonòma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (J.G.)
| | - Lareen Khouri
- Institut of Chemistry, Casali Center for Applied Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Imma Raurell
- Liver Disease Group, Liver Unit, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, Universitat Autonòma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (J.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Clinical Biochemistry Service, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035e Barcelona, Spain
| | - Simo Schwartz
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Clinical Biochemistry Service, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035e Barcelona, Spain
| | - María Martínez-Gómez
- Liver Disease Group, Liver Unit, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, Universitat Autonòma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (J.G.)
| | - María Teresa Salcedo
- Pathology Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Juan Manuel Pericàs
- Liver Disease Group, Liver Unit, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, Universitat Autonòma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (J.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Diana Hide
- Liver Disease Group, Liver Unit, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, Universitat Autonòma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (J.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Mingxing Wei
- Cellvax, SAS Villejuif Bio Park, 93230 Villejuif, France;
| | - Norman Metanis
- Institut of Chemistry, Casali Center for Applied Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joan Genescà
- Liver Disease Group, Liver Unit, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, Universitat Autonòma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (J.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - María Martell
- Liver Disease Group, Liver Unit, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Vall d’Hebron Hospital Campus, Universitat Autonòma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (J.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| |
Collapse
|
13
|
Wu SY, Chen WM, Chiang MF, Lo HC, Wu MS, Lee MC, Soong RS. Protective effects of statins on the incidence of NAFLD-related decompensated cirrhosis in T2DM. Liver Int 2023; 43:2232-2244. [PMID: 37381761 DOI: 10.1111/liv.15656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome and poses a significant threat to patients with type 2 diabetes mellitus (T2DM) and metabolic dysregulation. Statins exert anti-inflammatory, antioxidative and antithrombotic effects that target mechanisms underlying NAFLD. However, the protective effects of the different doses, intensities and types of statins on the incidence of NAFLD-related decompensated liver cirrhosis (DLC) in patients with T2DM remain unclear. METHODS This study used the data of patients with T2DM who were non-HBV and non-HCV carriers from a national population database to examine the protective effects of statin use on DLC incidence through propensity score matching. The incidence rate (IR) and incidence rate ratios (IRRs) of DLC in patients with T2DM with or without statin use were calculated. RESULTS A higher cumulative dose and specific types of statins, namely rosuvastatin, pravastatin, atorvastatin, simvastatin and fluvastatin, reduced the risk of DLC in patients with T2DM. Statin use was associated with a significant reduction in the risk of DLC (HR: .65, 95% CI: .61-.70). The optimal daily intensity of statin use with the lowest risk of DLC was .88 defined daily dose (DDD). CONCLUSIONS The results revealed the protective effects of specific types of statins on DLC risk in patients with T2DM and indicated a dose-response relationship. Additional studies are warranted to understand the specific mechanisms of action of different types of statins and their effect on DLC risk in patients with T2DM.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung City, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung City, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ming-Feng Chiang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Hung-Chieh Lo
- Department of Traumatology, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Transplantation Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center for Organ Transplantation, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei City, Taiwan
| | - Ruey-Shyang Soong
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Transplantation Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center for Organ Transplantation, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
14
|
Gil M, Azkargorta M, Fuster C, Martínez-Gómez M, Raurell I, Barberá A, Pericàs JM, Hide D, Elortza F, Genescà J, Martell M. Proteomic Analysis of Dysfunctional Liver Sinusoidal Endothelial Cells Reveals Substantial Differences in Most Common Experimental Models of Chronic Liver Diseases. Int J Mol Sci 2023; 24:11904. [PMID: 37569282 PMCID: PMC10418749 DOI: 10.3390/ijms241511904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Molecular markers of dedifferentiation of dysfunctional liver sinusoidal endothelial cells (LSEC) have not been fully elucidated. We aimed at deciphering the molecular profile of dysfunctional LSEC in different pathological scenarios. Flow cytometry was used to sort CD11b-/CD32b+ and CD11b-/CD32b- LSEC from three rat models of liver disease (bile duct ligation-BDL; inhaled carbon tetrachloride-CCl4; and high fat glucose/fructose diet-HFGFD). A full proteomic profile was performed applying nano-scale liquid chromatography tandem mass spectrometry (nLC-MS) and analyzed with PEAKS software. The percentage of CD32b- LSEC varied across groups, suggesting different capillarization processes. Both CD32+ and CD32b- LSEC from models are different from control LSEC, but differently expressed proteins in CD32b- LSEC are significantly higher. Heatmaps evidenced specific protein expression patterns for each model. Analysis of biological significance comparing dysfunctional CD32b- LSEC with specialized CD32b+ LSEC from controls showed central similarities represented by 45 common down-regulated proteins involved in the suppression of the endocytic machinery and 63 common up-regulated proteins associated with the actin-dependent cytoskeleton reorganization. In summary; substantial differences but also similarities in dysfunctional LSEC from the three most common models of liver disease were found, supporting the idea that LSEC may harbor different protein expression profiles according to the etiology or disease stage.
Collapse
Affiliation(s)
- Mar Gil
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, BRTA (Basque Research & Technology Alliance), Bizkaia Science and Technology Park, 48160 Derio, Spain; (M.A.); (F.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Carla Fuster
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - María Martínez-Gómez
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - Imma Raurell
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Aurora Barberá
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - Juan Manuel Pericàs
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Diana Hide
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, BRTA (Basque Research & Technology Alliance), Bizkaia Science and Technology Park, 48160 Derio, Spain; (M.A.); (F.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Joan Genescà
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - María Martell
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
15
|
Dolivo DM, Reed CR, Gargiulo KA, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Anti-fibrotic effects of statin drugs: a review of evidence and mechanisms. Biochem Pharmacol 2023:115644. [PMID: 37321414 DOI: 10.1016/j.bcp.2023.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Fibrosis is a pathological repair process common among organs, that responds to damage by replacement of tissue with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis. Drug repurposing can provide key advantages to de novo drug discovery, harnessing the benefits of previously elucidated mechanisms of action and already existing pharmacokinetic profiles. One class of drugs a wealth of clinical data and extensively studied safety profiles is the statins, a class of antilipidemic drugs widely prescribed for hypercholesterolemia. In addition to these widely utilized lipid-lowering effects, increasing data from cellular, pre-clinical mammalian, and clinical human studies have also demonstrated that statins are able to alleviate tissue fibrosis originating from a variety of pathological insults via lesser-studied, pleiotropic effects of these drugs. Here we review literature demonstrating evidence for direct effects of statins antagonistic to fibrosis, as well as much of the available mechanistic data underlying these effects. A more complete understanding of the anti-fibrotic effects of statins may enable a clearer picture of their anti-fibrotic potential for various clinical indications. Additionally, more lucid comprehension of the mechanisms by which statins exert anti-fibrotic effects may aid in development of novel therapeutic agents that target similar pathways but with greater specificity or efficacy.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| | - Charlotte R Reed
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Kristine A Gargiulo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Adrian E Rodrigues
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Robert D Galiano
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Thomas A Mustoe
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Seok Jong Hong
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| |
Collapse
|
16
|
Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications. Pharmacol Ther 2023; 244:108372. [PMID: 36894027 PMCID: PMC10084912 DOI: 10.1016/j.pharmthera.2023.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
The increasing prevalence of the metabolic syndrome (MetS) is a threat to global public health due to its lethal complications. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS characterized by hepatic steatosis, which is potentially progressive to the inflammatory and fibrotic nonalcoholic steatohepatitis (NASH). The adipose tissue (AT) is also a major metabolic organ responsible for the regulation of whole-body energy homeostasis, and thereby highly involved in the pathogenesis of the MetS. Recent studies suggest that endothelial cells (ECs) in the liver and AT are not just inert conduits but also crucial mediators in various biological processes via the interaction with other cell types in the microenvironment both under physiological and pathological conditions. Herein, we highlight the current knowledge of the role of the specialized liver sinusoidal endothelial cells (LSECs) in NAFLD pathophysiology. Next, we discuss the processes through which AT EC dysfunction leads to MetS progression, with a focus on inflammation and angiogenesis in the AT as well as on endothelial-to-mesenchymal transition of AT-ECs. In addition, we touch upon the function of ECs residing in other metabolic organs including the pancreatic islet and the gut, the dysregulation of which may also contribute to the MetS. Finally, we highlight potential EC-based therapeutic targets for human MetS, and NASH based on recent achievements in basic and clinical research and discuss how to approach unsolved problems in the field.
Collapse
Affiliation(s)
- Kunimaro Furuta
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiaofang Tang
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Shahidul Islam
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alonso Tapia
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Samar H Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Jiang T, Wu X, Zhou H, Hu Y, Cao J. Pathological Changes in Hepatic Sinusoidal Endothelial Cells in Schistosoma japonicum-Infected Mice. Trop Med Infect Dis 2023; 8:tropicalmed8020124. [PMID: 36828540 PMCID: PMC9959305 DOI: 10.3390/tropicalmed8020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Schistosomiasis japonica is a zoonotic parasitic disease causing liver fibrosis. Liver sinusoidal endothelial cells (LSECs) exhibit fenestrations, which promote hepatocyte regeneration and reverses the process of liver fibrosis. To investigate the pathological changes of LSECs in schistosomiasis, we established a Schistosomiasis model. The population, phenotype, and secretory function of LSECs were detected by flow cytometry at 20, 28, and 42 days post infection. The changes in LSEC fenestration and basement membrane were observed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Quantitative real-time PCR and Western blotting were used to detect the expression of molecules associated with epithelial-mesenchymal transition (EMT) and fibrosis of LSECs and the liver. The flow cytometry results showed that the total LSEC proportions, differentiated LSEC proportions, and nitric oxide (NO) secretion of LSECs were decreased, and the proportion of dedifferentiated LSECs increased significantly post infection. The electron microscopy results showed that the number of fenestrate was decreased and there was complete basement membrane formation in LSECs following infection. The qPCR and Western blot results showed that EMT, and fibrosis-related indicators of LSECs and the liver changed significantly during the early stages of infection and were aggravated in the middle and late stages. The pathological changes in LSECs may promote EMT and liver fibrosis induced by Schistosoma japonicum infection.
Collapse
Affiliation(s)
- Tingting Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Xiaoying Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Hao Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Correspondence: (Y.H.); (J.C.)
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (Y.H.); (J.C.)
| |
Collapse
|
18
|
Nababan SHH, Lesmana CRA. Portal Hypertension in Nonalcoholic Fatty Liver Disease: From Pathogenesis to Clinical Practice. J Clin Transl Hepatol 2022; 10:979-985. [PMID: 36304507 PMCID: PMC9547264 DOI: 10.14218/jcth.2021.00593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Portal hypertension in nonalcoholic fatty liver disease (NAFLD) mostly occur in cirrhotic stage. However, several experimental and clinical studies showed evidence of portal hypertension in NAFLD without significant or advance fibrosis. This early development of portal hypertension in NAFLD is associated with liver sinusoidal contraction by hepatocellular lipid accumulation and ballooning, which is also accompanied by capillarization and dysfunction of liver sinusoidal endothelial cells. Both of these impaired mechanical and molecular components can cause an increase in intrahepatic vascular resistance which lead to the increase of portal pressure in the absence of significant liver fibrosis. Extrahepatic factors such as insulin resistance and gut dysbiosis may also contribute to liver sinusoidal endothelial dysfunction and early portal hypertension in NAFLD. The clinical impact of early portal hypertension in NAFLD is still unclear. However, clinical tools for diagnosis and monitoring of portal hypertension in NAFLD are being investigated to predict high-risk patients and to guide therapy.
Collapse
Affiliation(s)
- Saut Horas H. Nababan
- Hepatobiliary Division, Department of Internal Medicine, Dr Cipto Mangunkusumo National General Hospital, Medical Faculty Universitas Indonesia, Jakarta, Indonesia
- Gastrointestinal Cancer Center, MRCCC Siloam Semanggi Hospital, Jakarta, Indonesia
| | - Cosmas Rinaldi Adithya Lesmana
- Hepatobiliary Division, Department of Internal Medicine, Dr Cipto Mangunkusumo National General Hospital, Medical Faculty Universitas Indonesia, Jakarta, Indonesia
- Gastrointestinal Cancer Center, MRCCC Siloam Semanggi Hospital, Jakarta, Indonesia
- Digestive Disease & GI Oncology Center, Medistra Hospital, Jakarta, Indonesia
- Correspondence to: Cosmas Rinaldi Adithya Lesmana, Hepatobiliary Division, Department of Internal Medicine, Dr Cipto Mangunkusomo National General Hospital Medical Faculty Universitas Indonesia, Jl. Diponegoro No.71 Jakarta 10430, Indonesia. ORCID: https://orcid.org/0000-0001-9992-9968. Tel: +62-21-31900924, Fax: +62-21-3918842, E-mail: mailto:
| |
Collapse
|
19
|
Santopaolo F, Coppola G, Giuli L, Gasbarrini A, Ponziani FR. Influence of Gut–Liver Axis on Portal Hypertension in Advanced Chronic Liver Disease: The Gut Microbiome as a New Protagonist in Therapeutic Management. MICROBIOLOGY RESEARCH 2022; 13:539-555. [DOI: 10.3390/microbiolres13030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Clinically significant portal hypertension is associated with most complications of advanced chronic liver disease (ACLD), including variceal bleeding, ascites, spontaneous bacterial peritonitis, hepatorenal syndrome, and hepatic encephalopathy. Gut dysbiosis is a hallmark of ACLD with portal hypertension and consists of the overgrowth of potentially pathogenic bacteria and a decrease in autochthonous bacteria; additionally, congestion makes the intestinal barrier more permeable to bacteria and their products, which contributes to the development of complications through inflammatory mechanisms. This review summarizes current knowledge on the role of the gut–liver axis in the pathogenesis of portal hypertension, with a focus on therapies targeting portal hypertension and the gut microbiota. The modulation of the gut microbiota on several levels represents a major challenge in the upcoming years; in-depth characterization of the molecular and microbiological mechanisms linking the gut–liver axis to portal hypertension in a bidirectional relationship could pave the way to the identification of new therapeutic targets for innovative therapies in the management of ACLD.
Collapse
Affiliation(s)
- Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Giuli
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
20
|
Nasiri-Ansari N, Androutsakos T, Flessa CM, Kyrou I, Siasos G, Randeva HS, Kassi E, Papavassiliou AG. Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells 2022; 11:2511. [PMID: 36010588 PMCID: PMC9407007 DOI: 10.3390/cells11162511] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. It is strongly associated with obesity, type 2 diabetes (T2DM), and other metabolic syndrome features. Reflecting the underlying pathogenesis and the cardiometabolic disorders associated with NAFLD, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has recently been proposed. Indeed, over the past few years, growing evidence supports a strong correlation between NAFLD and increased cardiovascular disease (CVD) risk, independent of the presence of diabetes, hypertension, and obesity. This implies that NAFLD may also be directly involved in the pathogenesis of CVD. Notably, liver sinusoidal endothelial cell (LSEC) dysfunction appears to be implicated in the progression of NAFLD via numerous mechanisms, including the regulation of the inflammatory process, hepatic stellate activation, augmented vascular resistance, and the distortion of microcirculation, resulting in the progression of NAFLD. Vice versa, the liver secretes inflammatory molecules that are considered pro-atherogenic and may contribute to vascular endothelial dysfunction, resulting in atherosclerosis and CVD. In this review, we provide current evidence supporting the role of endothelial cell dysfunction in the pathogenesis of NAFLD and NAFLD-associated atherosclerosis. Endothelial cells could thus represent a "golden target" for the development of new treatment strategies for NAFLD and its comorbid CVD.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, ‘Sotiria’ Thoracic Diseases General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
21
|
Pinheiro I, Barberá A, Raurell I, Estrella F, de Leeuw M, Bolca S, Gottardi D, Horscroft N, Possemiers S, Salcedo MT, Genescà J, Martell M, Augustin S. A Nine-Strain Bacterial Consortium Improves Portal Hypertension and Insulin Signaling and Delays NAFLD Progression In Vivo. Biomedicines 2022; 10:biomedicines10051191. [PMID: 35625927 PMCID: PMC9175091 DOI: 10.3390/biomedicines10051191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
The gut microbiome has a recognized role in Non-alcoholic fatty liver disease (NAFLD) and associated comorbidities such as Type-2 diabetes and obesity. Stool transplantation has been shown to improve disease by restoring endothelial function and insulin signaling. However, more patient-friendly treatments are required. The present study aimed to test the effect of a defined bacterial consortium of nine gut commensal strains in two in vivo rodent models of Non-alcoholic steatohepatitis (NASH): a rat model of NASH and portal hypertension (PHT), and the Stelic animal (mouse) model (STAM™). In both studies the consortium was administered orally q.d. after disease induction. In the NASH rats, the consortium was administered for 2 weeks and compared to stool transplant. In the STAM™ study administration was performed for 4 weeks, and the effects compared to vehicle or Telmisartan at the stage of NASH/early fibrosis. A second group of animals was followed for another 3 weeks to assess later-stage fibrosis. In the NASH rats, an improvement in PHT and endothelial function was observed. Gut microbial compositional changes also revealed that the consortium achieved a more defined and richer replacement of the gut microbiome than stool transplantation. Moreover, liver transcriptomics suggested a beneficial modulation of pro-fibrogenic pathways. An improvement in liver fibrosis was then confirmed in the STAM™ study. In this study, the bacterial consortium improved the NAFLD activity score, consistent with a decrease in steatosis and ballooning. Serum cytokeratin-18 levels were also reduced. Therefore, administration of a specific bacterial consortium of defined composition can ameliorate NASH, PHT, and fibrosis, and delay disease progression.
Collapse
Affiliation(s)
- Iris Pinheiro
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
- Correspondence: (I.P.); (S.A.); Tel.: +32-92770864 (I.P.)
| | - Aurora Barberá
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
| | - Imma Raurell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
- Centro De Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - Federico Estrella
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
| | - Marcel de Leeuw
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - Selin Bolca
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - Davide Gottardi
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - Nigel Horscroft
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - Sam Possemiers
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - María Teresa Salcedo
- Pathology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Joan Genescà
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
- Centro De Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - María Martell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
- Centro De Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - Salvador Augustin
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
- Centro De Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto De Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (I.P.); (S.A.); Tel.: +32-92770864 (I.P.)
| |
Collapse
|
22
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
23
|
Chen YW, Diamante G, Ding J, Nghiem TX, Yang J, Ha SM, Cohn P, Arneson D, Blencowe M, Garcia J, Zaghari N, Patel P, Yang X. PharmOmics: A species- and tissue-specific drug signature database and gene-network-based drug repositioning tool. iScience 2022; 25:104052. [PMID: 35345455 PMCID: PMC8957031 DOI: 10.1016/j.isci.2022.104052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Drug development has been hampered by a high failure rate in clinical trials due to our incomplete understanding of drug functions across organs and species. Therefore, elucidating species- and tissue-specific drug functions can provide insights into therapeutic efficacy, potential adverse effects, and interspecies differences necessary for effective translational medicine. Here, we present PharmOmics, a drug knowledgebase and analytical tool that is hosted on an interactive web server. Using tissue- and species-specific transcriptome data from human, mouse, and rat curated from different databases, we implemented a gene-network-based approach for drug repositioning. We demonstrate the potential of PharmOmics to retrieve known therapeutic drugs and identify drugs with tissue toxicity using in silico performance assessment. We further validated predicted drugs for nonalcoholic fatty liver disease in mice. By combining tissue- and species-specific in vivo drug signatures with gene networks, PharmOmics serves as a complementary tool to support drug characterization and network-based medicine. Development of PharmOmics, a platform for drug repositioning and toxicity prediction Contains >18000 species/tissue-specific gene signatures for 941 drugs and chemicals Benchmarked and validated network-based drug repositioning and toxicity prediction PharmOmics is freely accessible via an online web server to facilitate user access
Collapse
Affiliation(s)
- Yen-Wei Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular, & Integrative Physiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Thien Xuan Nghiem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sung-Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Cohn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular, & Integrative Physiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Garcia
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nima Zaghari
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul Patel
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular, & Integrative Physiology, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author
| |
Collapse
|
24
|
Simvastatin Improves Microcirculatory Function in Nonalcoholic Fatty Liver Disease and Downregulates Oxidative and ALE-RAGE Stress. Nutrients 2022; 14:nu14030716. [PMID: 35277075 PMCID: PMC8838100 DOI: 10.3390/nu14030716] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Increased reactive oxidative stress, lipid peroxidation, inflammation, and fibrosis, which contribute to tissue damage and development and progression of nonalcoholic liver disease (NAFLD), play important roles in microcirculatory disorders. We investigated the effect of the modulatory properties of simvastatin (SV) on the liver and adipose tissue microcirculation as well as metabolic and oxidative stress parameters, including the advanced lipoxidation end product–receptors of advanced glycation end products (ALE-RAGE) pathway. SV was administered to an NAFLD model constructed using a high-fat–high-carbohydrate diet (HFHC). HFHC caused metabolic changes indicative of nonalcoholic steatohepatitis; treatment with SV protected the mice from developing NAFLD. SV prevented microcirculatory dysfunction in HFHC-fed mice, as evidenced by decreased leukocyte recruitment to hepatic and fat microcirculation, decreased hepatic stellate cell activation, and improved hepatic capillary network architecture and density. SV restored basal microvascular blood flow in the liver and adipose tissue and restored the endothelium-dependent vasodilatory response of adipose tissue to acetylcholine. SV treatment restored antioxidant enzyme activity and decreased lipid peroxidation, ALE-RAGE pathway activation, steatosis, fibrosis, and inflammatory parameters. Thus, SV may improve microcirculatory function in NAFLD by downregulating oxidative and ALE-RAGE stress and improving steatosis, fibrosis, and inflammatory parameters.
Collapse
|
25
|
Baffy G, Bosch J. Overlooked subclinical portal hypertension in non-cirrhotic NAFLD: Is it real and how to measure it? J Hepatol 2022; 76:458-463. [PMID: 34606912 DOI: 10.1016/j.jhep.2021.09.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022]
Abstract
Clinical and experimental advances related to the detection, magnitude and pathobiology of subclinical portal hypertension in non-alcoholic fatty liver disease (NAFLD), primarily observed in the presence of non-alcoholic steatohepatitis (NASH), prompt us to revisit current disease paradigms. Hepatic venous pressure gradient (HVPG) has been reported to underestimate portal pressure in NASH-related cirrhosis, while inaccuracy is more likely in non-cirrhotic livers, indicating a potential need for new and preferably non-invasive methods of measurement. Although clinically significant portal hypertension (HVPG ≥10 mmHg) retains its prognostic significance in NASH, subclinical portal hypertension (HVPG 6.0-9.5 mmHg) has been repeatedly detected in patients with NAFLD in the absence of cirrhosis or even significant fibrosis whereas the impact of these findings on disease outcomes remains unclear. Mechanocrine signalling pathways in various types of liver cell reveal a molecular basis for the adverse effects of subclinical portal hypertension and suggest a bidirectional relationship between portal pressure and fibrosis. These findings may guide efforts to improve risk assessment and identify novel therapeutic targets in NAFLD.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Jaume Bosch
- Department of Biomedical Research, University of Bern, Bern, Switzerland; Institut d'Investigacions Biomediques August Pi i Sunyer and CIBERehd, University of Barcelona, Spain
| |
Collapse
|
26
|
Tzanaki I, Agouridis AP, Kostapanos MS. Is there a role of lipid-lowering therapies in the management of fatty liver disease? World J Hepatol 2022; 14:119-139. [PMID: 35126843 PMCID: PMC8790403 DOI: 10.4254/wjh.v14.i1.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/30/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Atherogenic dyslipidemia is characterized by increased triglyceride-rich lipoproteins and low high-density lipoprotein cholesterol concentrations. It is highly prevalent in non-alcoholic fatty liver disease (NAFLD) and contributes to the increased cardiovascular risk associated with this condition. Alongside insulin resistance it plays an important pathogenetic role in NAFLD/non-alcoholic steatohepatitis (NASH) development and progression. It has been shown that cholesterol-lowering reduces cardiovascular risk more in NAFLD vs non-NAFLD high-risk individuals. This evidence highlights the importance of effective lipid modulation in NAFLD. In this narrative review the effects of the most commonly used lipid-lowering therapies on liver outcomes alongside their therapeutic implications in NAFLD/NASH are critically discussed. Preclinical and clinical evidence suggests that statins reduce hepatic steatosis, inflammation and fibrosis in patients with NAFLD/NASH. Most data are derived from observational and small prospective clinical studies using changes in liver enzyme activities, steatosis/fibrosis scores, and imaging evidence of steatosis as surrogates. Also, relevant histologic benefits were noted in small biopsy studies. Atorvastatin and rosuvastatin showed greater benefits, whereas data for other statins are scarce and sometimes conflicting. Similar studies to those of statins showed efficacy of ezetimibe against hepatic steatosis. However, no significant anti-inflammatory and anti-fibrotic actions of ezetimibe have been shown. Preclinical studies showed that fibrates through peroxisome proliferator-activated receptor (PPAR)α activation may have a role in NAFLD prevention and management. Nevertheless, no relevant benefits have been noted in human studies. Species-related differences in PPARα expression and its activation responsiveness may help explain this discrepancy. Omega-3 fatty acids reduced hepatic steatosis in numerous heterogeneous studies, but their benefits on hepatic inflammation and fibrosis have not been established. Promising preliminary data for the highly purified eicosapentaenoic acid require further confirmation. Observational studies suggest that proprotein convertase subtilisin/kexin9 inhibitors may also have a role in the management of NAFLD, though this needs to be established by future prospective studies.
Collapse
Affiliation(s)
- Ismini Tzanaki
- School of Medicine, European University Cyprus, Nicosia, Cyprus, Nicosia 2404, Cyprus
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Michael S Kostapanos
- General Medicine, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge CB20QQ, United Kingdom
| |
Collapse
|
27
|
Torres-Peña JD, Martín-Piedra L, Fuentes-Jiménez F. Statins in Non-alcoholic Steatohepatitis. Front Cardiovasc Med 2021; 8:777131. [PMID: 34901236 PMCID: PMC8652077 DOI: 10.3389/fcvm.2021.777131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the primary cause of chronic liver disease. The range is extensive, including hepatocellular carcinoma, cirrhosis, fibrosis, fatty liver, and non-alcoholic steatohepatitis (NASH). NASH is a condition related to obesity, overweight, metabolic syndrome, diabetes, and dyslipidemia. It is a dynamic condition that can regress to isolated steatosis or progress to fibrosis and cirrhosis. Statins exert anti-inflammatory, proapoptotic, and antifibrotic effects. It has been proposed that these drugs could have a relevant role in NASH. In this review, we provide an overview of current evidence, from mechanisms of statins involved in the modulation of NASH to human trials about the use of statins to treat or attenuate NASH.
Collapse
Affiliation(s)
- Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Laura Martín-Piedra
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Francisco Fuentes-Jiménez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
28
|
Circulatory Endothelin 1-Regulating RNAs Panel: Promising Biomarkers for Non-Invasive NAFLD/NASH Diagnosis and Stratification: Clinical and Molecular Pilot Study. Genes (Basel) 2021; 12:genes12111813. [PMID: 34828420 PMCID: PMC8619934 DOI: 10.3390/genes12111813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the major seeds of liver cirrhosis and hepatocellular carcinoma. There is no convenient reliable non-invasive early diagnostic tool available for NAFLD/NASH diagnosis and stratification. Recently, the role of cytosolic sensor, stimulator of interferon genes (STING) signaling pathway in pathogenesis of nonalcoholic steatohepatitis (NASH) has been evidenced in research. We have selected EDN1/TNF/MAPK3/EP300/hsa-miR-6888-5p/lncRNA RABGAP1L-DT-206 RNA panel from bioinformatics microarrays databases related to STING pathway and NAFLD/NASH pathogenesis. We have used reverse-transcriptase real-time polymerase chain reaction to assess the expression of the serum RNAs panel in NAFLD/NASH without suspicion of advanced fibrosis, NAFLD/with NASH patients with suspicion of advanced fibrosis and controls. Additionally, we have assessed the diagnostic performance of the Ribonucleic acid (RNA) panel. We have detected upregulation of the EDN1 regulating RNAs panel expression in NAFLD/NASH cases compared to healthy controls. We concluded that this circulatory RNA panel could enable us to discriminate NAFLD/NASH cases from controls, and also NAFLD/NASH cases (F1, F2) from advanced fibrosis stages (F3, F4).
Collapse
|
29
|
The Hepatic Sinusoid in Chronic Liver Disease: The Optimal Milieu for Cancer. Cancers (Basel) 2021; 13:cancers13225719. [PMID: 34830874 PMCID: PMC8616349 DOI: 10.3390/cancers13225719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary During the development of chronic liver disease, the hepatic sinusoid undergoes major changes that further compromise the hepatic function, inducing persistent inflammation and the formation of scar tissue, together with alterations in liver hemodynamics. This diseased background may induce the formation and development of hepatocellular carcinoma (HCC), which is the most common form of primary liver cancer and a major cause of mortality. In this review, we describe the ways in which the dysregulation of hepatic sinusoidal cells—including liver sinusoidal cells, Kupffer cells, and hepatic stellate cells—may have an important role in the development of HCC. Our review summarizes all of the known sinusoidal processes in both health and disease, and possible treatments focusing on the dysregulation of the sinusoid; finally, we discuss how some of these alterations occurring during chronic injury are shared with the pathology of HCC and may contribute to its development. Abstract The liver sinusoids are a unique type of microvascular beds. The specialized phenotype of sinusoidal cells is essential for their communication, and for the function of all hepatic cell types, including hepatocytes. Liver sinusoidal endothelial cells (LSECs) conform the inner layer of the sinusoids, which is permeable due to the fenestrae across the cytoplasm; hepatic stellate cells (HSCs) surround LSECs, regulate the vascular tone, and synthetize the extracellular matrix, and Kupffer cells (KCs) are the liver-resident macrophages. Upon injury, the harmonic equilibrium in sinusoidal communication is disrupted, leading to phenotypic alterations that may affect the function of the whole liver if the damage persists. Understanding how the specialized sinusoidal cells work in coordination with each other in healthy livers and chronic liver disease is of the utmost importance for the discovery of new therapeutic targets and the design of novel pharmacological strategies. In this manuscript, we summarize the current knowledge on the role of sinusoidal cells and their communication both in health and chronic liver diseases, and their potential pharmacologic modulation. Finally, we discuss how alterations occurring during chronic injury may contribute to the development of hepatocellular carcinoma, which is usually developed in the background of chronic liver disease.
Collapse
|
30
|
Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. The wHole Story About Fenestrations in LSEC. Front Physiol 2021; 12:735573. [PMID: 34588998 PMCID: PMC8473804 DOI: 10.3389/fphys.2021.735573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.
Collapse
Affiliation(s)
- Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Larissa D Kruse
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Christopher Florian Holte
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Bartlomiej Zapotoczny
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
31
|
Bravo M, Raurell I, Barberá A, Hide D, Gil M, Estrella F, Salcedo MT, Augustin S, Genescà J, Martell M. Synergic effect of atorvastatin and ambrisentan on sinusoidal and hemodynamic alterations in a rat model of NASH. Dis Model Mech 2021; 14:268318. [PMID: 34014280 PMCID: PMC8188885 DOI: 10.1242/dmm.048884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
In non-alcoholic steatohepatitis (NASH), decreased nitric oxide and increased endothelin-1 (ET-1, also known as EDN1) released by sinusoidal endothelial cells (LSEC) induce hepatic stellate cell (HSC) contraction and contribute to portal hypertension (PH). Statins improve LSEC function, and ambrisentan is a selective endothelin-receptor-A antagonist. We aimed to analyse the combined effects of atorvastatin and ambrisentan on liver histopathology and hemodynamics, together with assessing the underlying mechanism in a rat NASH model. Diet-induced NASH rats were treated with atorvastatin (10 mg/kg/day), ambrisentan (30 mg/kg/day or 2 mg/kg/day) or a combination of both for 2 weeks. Hemodynamic parameters were registered and liver histology and serum biochemical determinations analysed. Expression of proteins were studied by immunoblotting. Conditioned media experiments were performed with LSEC. HSCs were characterized by RT-PCR, and a collagen lattice contraction assay was performed. Atorvastatin and ambrisentan act synergistically in combination to completely normalize liver hemodynamics and reverse histological NASH by 75%. Atorvastatin reversed the sinusoidal contractile phenotype, thus improving endothelial function, whereas ambrisentan prevented the contractile response in HSCs by blocking ET-1 response. Additionally, ambrisentan also increased eNOS (also known as Nos3) phosphorylation levels in LSEC, via facilitating the stimulation of endothelin-receptor-B in these cells. Furthermore, the serum alanine aminotransferase of the combined treatment group decreased to normal levels, and this group exhibited a restoration of the HSC quiescent phenotype. The combination of atorvastatin and ambrisentan remarkably improves liver histology and PH in a diet-induced NASH model. By recovering LSEC function, together with inhibiting the activation and contraction of HSC, this combined treatment may be an effective treatment for NASH patients. Summary: Combining atorvastatin with ambrisentan is safe and effective in reducing intrahepatic resistance and portal hypertension in an experimental model of NASH. This liver histology amelioration highlights a promising therapeutic strategy.
Collapse
Affiliation(s)
- Miren Bravo
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Imma Raurell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Aurora Barberá
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Diana Hide
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mar Gil
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Federico Estrella
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - María Teresa Salcedo
- Department of Pathology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Salvador Augustin
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Joan Genescà
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María Martell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
32
|
Yang M, Zhang C. The role of liver sinusoidal endothelial cells in cancer liver metastasis. Am J Cancer Res 2021; 11:1845-1860. [PMID: 34094657 PMCID: PMC8167702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the gatekeeper cells in the liver, contributing critical roles in liver physiological and pathological changes. Factors such as dietary macronutrients, toxins, and aging impact LSEC fenestration. Defenestration of LSECs changes their phenotype and function. Under liver injury, capillarized LSECs promote hepatic stellate cells (HSCs) activation and fibrogenesis, while decapillarized LSECs protect the activation of HSCs and liver injury. The expression of chemokines, such as CXCL9 and CXCL16, changes and impacts the infiltration of immune cells in the liver during disease progression, including hepatocellular carcinoma (HCC). As the largest solid organ, liver is one of the most favorable organs into where tumor cells metastasize. The increased interaction and adhesion of circulating tumor cells (CTCs) with LSECs in the local microenvironment and LSEC-induced tolerance of immunity promote cancer liver metastasis. Several strategies can be applied to target LSEC to modulate their function to prevent cancer liver metastasis, including gut microbiota modulation, microRNA therapy, and medical treatment. Delivery of different treatment agents with nanoparticles may promote precise target treatment. Overall, targeting LSECs is a potential strategy for treatment of early liver diseases and prevention of cancer liver metastasis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of MissouriColumbia, Missouri, USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, University of MissouriColumbia, Missouri, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Statins are a class of lipid lower medications used primarily in patients with high-risk cardiovascular disease. Since their development, statins have been considered to be harmful in patients with liver disease, and many of the prescribing information labels consider them to be contraindicated in patients with active liver disease. However, recent studies have shown the contrary, warranting further investigation and discussion. This review aims to describe the latest literature on the mechanism, safety profile and potential benefits of statins use on the natural history of chronic liver disease (CLD) progression and its complications. RECENT FINDINGS A number of recently published studies have added to the existing body of literature supporting the concept that statins are safe and likely to be beneficial for treating patients with CLD. Patients with CLD including hepatitis B virus infection, hepatitis C virus infection, nonalcoholic fatty liver disease and alcohol on statins have been shown to have a lower rate of decompensating events, lower incidence of hepatocellular cancer, a lower rate of infections, and increased survival. However, the majority of the available literature supporting statin use in patients with liver disease comes from retrospective observational studies with high potential for bias. SUMMARY Statins appear to be safe in patients with compensated cirrhosis, and evidence suggests that they may reduce fibrosis, even in patients with advanced fibrosis and cirrhosis. Further high-quality research on this topic is needed to fully delineate the effect of statins in patients with liver disease.
Collapse
Affiliation(s)
- Mohamad Kareem Marrache
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|
34
|
Wang XK, Peng ZG. Targeting Liver Sinusoidal Endothelial Cells: An Attractive Therapeutic Strategy to Control Inflammation in Nonalcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:655557. [PMID: 33935770 PMCID: PMC8082362 DOI: 10.3389/fphar.2021.655557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially its advanced stage nonalcoholic steatohepatitis (NASH), has become a threatened public health problem worldwide. However, no specific drug has been approved for clinical use to treat patients with NASH, though there are many promising candidates against NAFLD in the drug development pipeline. Recently, accumulated evidence showed that liver sinusoidal endothelial cells (LSECs) play an essential role in the occurrence and development of liver inflammation in patients with NAFLD. LSECs, as highly specialized endothelial cells with unique structure and anatomical location, contribute to the maintenance of liver homeostasis and could be a promising therapeutic target to control liver inflammation of NAFLD. In this review, we outline the pathophysiological roles of LSECs related to inflammation of NAFLD, highlight the pro-inflammatory and anti-inflammatory effects of LSECs, and discuss the potential drug development strategies against NAFLD based on targeting to LSECs.
Collapse
Affiliation(s)
- Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, National Health and Family Planning Commission, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Ma H, Liu X, Zhang M, Niu J. Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms. Mol Biol Rep 2021; 48:2803-2815. [PMID: 33730288 DOI: 10.1007/s11033-021-06269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases are attributed to liver injury. Development of fibrosis from chronic liver diseases is a dynamic process that involves multiple molecular and cellular processes. As the first to be impacted by injury, liver sinusoidal endothelial cells (LSECs) are involved in the pathogenesis of liver diseases caused by a variety of etiologies. Moreover, capillarization of LSECs has been recognized as an important event in the development of chronic liver diseases and fibrosis. Studies have reported that various cytokines (such as vascular endothelial growth factor, transforming growth factor-β), and pathways (such as hedgehog, and Notch), as well as epigenetic and metabolic factors are involved in the development of LSEC-mediated liver fibrosis. This review describes the complexity and plasticity of LSECs in fibrotic liver diseases from several perspectives, including the cross-talk between LSECs and other intra-hepatic cells. Moreover, it summarizes the mechanisms of several kinds of LSECs-targeting anti-fibrosis chemicals, and provides a theoretical basis for future studies.
Collapse
Affiliation(s)
- Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Xu Liu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Mingyuan Zhang
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
36
|
Ahsan F, Oliveri F, Goud HK, Mehkari Z, Mohammed L, Javed M, Althwanay A, Rutkofsky IH. Pleiotropic Effects of Statins in the Light of Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Cureus 2020; 12:e10446. [PMID: 33072455 PMCID: PMC7557526 DOI: 10.7759/cureus.10446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Statins, the lipid-lowering drugs, and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), a lipid-related pathology, share a complex relationship, one known to be hepatotoxic and other being hepatic injury. NASH is an unresolved mystery in terms of treatment. Could statins prove to be a promising solution due to their pleiotropic properties in addition to the cholesterol-lowering effect? This study aims to find statin effectiveness in NAFLD/NASH treatment and prevention of associated adverse outcomes. An extensive data search was done to identify the studies assessing statin effect on NAFLD/NASH and then analyzed to establish the relationship. Several studies demonstrated a reduction in NAFLD/NASH-associated inflammation and fibrosis with statin treatment. These anti-inflammatory and anti-fibrotic effects were through their pleiotropic properties, which were in addition to their cholesterol-lowering effect. In various animal studies, statins were found to improve hepatic lipotoxicity, oxidative stress, inflammatory responses, and fibrosis associated with NASH through multiple pathways. Statins exert these protective effects by recovering the gene expression level of peroxisomal proliferator-activated receptor alpha (PPARα) and therefore restore the mitochondrial and peroxisomal fatty acid oxidation (FAO). Statin treatment also increased the levels of paraoxonase 1 (PON1), an antioxidant and antiatherogenic enzyme that is reduced in NAFLD as well as encounter the hepatic lipotoxicity by resolving cholesterol crystals and Kupffer cells (KCs) with crown-like structures (CLSs). They exhibited antitumor properties by inhibiting proinflammatory cytokines and vascular proliferative factors. Moreover, they restored a healthy liver sinusoidal endothelial cell (LSEC) and hepatic stellate cells (HSC) along with inhibiting the activation of HSC via modulating inducible nitric oxide synthase (iNOS) and expressions of endothelial nitric oxide synthase (eNOS). Besides, they were protective against cardiovascular disease (CVD)-related morbidity and mortality, hepatocellular carcinoma (HCC), and metabolic syndrome (MS) associated with NAFLD/NASH. NASH and its precursor, NAFLD, could be treated and prevented with statins owing to their pleiotropic properties. This study helps to prove this by looking back at different literature and has successfully enlightened the point. Once proved through large clinical trials on humans, it could revolutionize the NASH therapy.
Collapse
Affiliation(s)
- Farah Ahsan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Federico Oliveri
- Cardiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harshit K Goud
- Internal Medicine, California Institute of Behavioural Neurosciences & Psychology, Fairfield, USA
| | - Zainab Mehkari
- Internal Medicine, California Institute of Behavioral Neuroscience & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Moiz Javed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aldanah Althwanay
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ian H Rutkofsky
- Psychiatry, Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
37
|
Hide D, Gil M, Andrade F, Rafael D, Raurell I, Bravo M, Barberá A, Gracia-Sancho J, Vargas V, Augustin S, Genescà J, Schwartz S, Martell M. Simvastatin-loaded polymeric micelles are more effective and less toxic than conventional statins in a pre-clinical model of advanced chronic liver disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102267. [PMID: 32681987 DOI: 10.1016/j.nano.2020.102267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/10/2020] [Accepted: 07/04/2020] [Indexed: 01/14/2023]
Abstract
Chronic liver disease (CLD) has no effective treatments apart from reducing its complications. Simvastatin has been tested as vasoprotective drug in experimental models of CLD showing promising results, but also limiting adverse effects. Two types of Pluronic® carriers loading simvastatin (PM108-simv and PM127-simv) as a drug delivery system were developed to avoid these toxicities while increasing the therapeutic window of simvastatin. PM127-simv showed the highest rates of cell internalization in rat liver sinusoidal endothelial cells (LSECs) and significantly lower toxicity than free simvastatin, improving cell phenotype. The in vivo biodistribution was mainly hepatic with 50% of the injected PM found in the liver. Remarkably, after one week of administration in a model of CLD, PM127-simv demonstrated superior effect than free simvastatin in reducing portal hypertension. Moreover, no signs of toxicity of PM127-simv were detected. Our results indicate that simvastatin targeted delivery to LSEC is a promising therapeutic approach for CLD.
Collapse
Affiliation(s)
- Diana Hide
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mar Gil
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Fernanda Andrade
- Drug Delivery and Targeting group, CIBBIM-Nanomedicine, Vall d'Hebron Institut Recerca (VHIR), Barcelona, Spain.
| | - Diana Rafael
- Drug Delivery and Targeting group, CIBBIM-Nanomedicine, Vall d'Hebron Institut Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Imma Raurell
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miren Bravo
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Aurora Barberá
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic, Barcelona, Spain..
| | - Víctor Vargas
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Salvador Augustin
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Joan Genescà
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Simo Schwartz
- Drug Delivery and Targeting group, CIBBIM-Nanomedicine, Vall d'Hebron Institut Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Martell
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
38
|
Ortega‐Ribera M, Hunt NJ, Gracia‐Sancho J, Cogger VC. The Hepatic Sinusoid in Aging and Disease: Update and Advances From the 20th Liver Sinusoid Meeting. Hepatol Commun 2020; 4:1087-1098. [PMID: 32626839 PMCID: PMC7327202 DOI: 10.1002/hep4.1517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
This is a meeting report of the 2019 Liver Sinusoid Meeting, 20th International Symposium on Cells of the Hepatic Sinusoid, held in Sydney, Australia, in September 2019. The meeting, which was organized by the International Society for Hepatic Sinusoidal Research, provided an update on the recent advances in the field of hepatic sinusoid cells in relation to cell biology, aging, and liver disease, with particular focus on the molecular and cellular targets involved in hepatic fibrosis, nonalcoholic hepatic steatohepatitis, alcoholic liver disease, hepatocellular carcinoma, and cirrhosis. In addition, the meeting highlighted the recent advances in regenerative medicine, targeted nanotechnologies, therapeutics, and novel methodologies.
Collapse
Affiliation(s)
- Martí Ortega‐Ribera
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic UnitInstitut d’Investigacions Biomèdiques August Pi i SunyerCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasBarcelonaSpain
| | - Nicholas J. Hunt
- Centre for Education and Research on AgeingConcord Repatriation General HospitalANZAC Research InstituteAustralian Ageing and Alzheimers InstituteConcordSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic UnitInstitut d’Investigacions Biomèdiques August Pi i SunyerCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasBarcelonaSpain
- HepatologyDepartment of Biomedical ResearchUniversity of BernInselspitalBernSwitzerland
| | - Victoria C. Cogger
- Centre for Education and Research on AgeingConcord Repatriation General HospitalANZAC Research InstituteAustralian Ageing and Alzheimers InstituteConcordSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| |
Collapse
|