1
|
Balasco N, Ruggiero A, Smaldone G, Pecoraro G, Coppola L, Pirone L, Pedone EM, Esposito L, Berisio R, Vitagliano L. Structural studies of KCTD1 and its disease-causing mutant P20S provide insights into the protein function and misfunction. Int J Biol Macromol 2024; 277:134390. [PMID: 39111466 DOI: 10.1016/j.ijbiomac.2024.134390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024]
Abstract
Members of the KCTD protein family play key roles in fundamental physio-pathological processes including cancer, neurodevelopmental/neuropsychiatric, and genetic diseases. Here, we report the crystal structure of the KCTD1 P20S mutant, which causes the scalp-ear-nipple syndrome, and molecular dynamics (MD) data on the wild-type protein. Surprisingly, the structure unravels that the N-terminal region, which precedes the BTB domain (preBTB) and bears the disease-associated mutation, adopts a folded polyproline II (PPII) state. The KCTD1 pentamer is characterized by an intricate architecture in which the different subunits mutually exchange domains to generate a closed domain swapping motif. Indeed, the BTB of each chain makes peculiar contacts with the preBTB and the C-terminal domain (CTD) of an adjacent chain. The BTB-preBTB interaction consists of a PPII-PPII recognition motif whereas the BTB-CTD contacts are mediated by an unusual (+/-) helix discontinuous association. The inspection of the protein structure, along with the data emerged from the MD simulations, provides an explanation of the pathogenicity of the P20S mutation and unravels the role of the BTB-preBTB interaction in the insurgence of the disease. Finally, the presence of potassium bound to the central cavity of the CTD pentameric assembly provides insights into the role of KCTD1 in metal homeostasis.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessia Ruggiero
- Institute of Molecular Biology and Pathology, CNR c/o Department Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | | | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy
| | - Emilia M Pedone
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy.
| |
Collapse
|
2
|
Akimova T, Wang L, Bartosh Z, Christensen LM, Eruslanov E, Singhal S, Aishwarya V, Hancock WW. Antisense targeting of FOXP3+ Tregs to boost anti-tumor immunity. Front Immunol 2024; 15:1426657. [PMID: 39234236 PMCID: PMC11371716 DOI: 10.3389/fimmu.2024.1426657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Our goal is to improve the outcomes of cancer immunotherapy by targeting FOXP3+ T-regulatory (Treg) cells with a next generation of antisense oligonucleotides (ASO), termed FOXP3 AUMsilence ASO. We performed in vitro experiments with human healthy donor PBMC and clinical samples from patients with lung cancer, mesothelioma and melanoma, and tested our approach in vivo using ASO FOXP3 in syngeneic murine cancer models and in humanized mice. ASO FOXP3 had no effects on cell viability or cell division, did not affect expression of other FOXP members, but decreased expression of FOXP3 mRNA in PBMC by 54.9% and in cancer samples by 64.7%, with corresponding 41.0% (PBMC) and 60.0% (cancer) decreases of Treg numbers (all p<0.0001). Hence, intratumoral Treg were more sensitive to the effects of ASO FOXP3 than peripheral blood Tregs. Isolated human Treg, incubated with ASO FOXP3 for 3.5 hours, had significantly impaired suppressive function (66.4%) versus Scramble control. In murine studies, we observed a significant inhibition of tumor growth, while 13.6% (MC38) to 22% (TC1) of tumors were completely resorbed, in conjunction with ~50% decrease of Foxp3 mRNA by qPCR and decreased numbers of intratumoral Tregs. In addition, there were no changes in FOXP3 mRNA expression or in the numbers of Tregs in draining lymph nodes and in spleens of tumor bearing mice, confirming that intratumoral Treg had enhanced sensitivity to ASO FOXP3 in vivo compared to other Treg populations. ASO FOXP3 Treg targeting in vivo and in vitro was accompanied by significant downregulation of multiple exhaustion markers, and by increased expression of perforin and granzyme-B by intratumoral T cells. To conclude, we report that targeting the key Treg transcription factor FOXP3, with ASO FOXP3, has a powerful anti-tumoral effect and enhances T cell response in vitro and in vivo.
Collapse
Affiliation(s)
- Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- AUM Biotech, LLC., Philadelphia, PA, United States
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Zhanna Bartosh
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- AUM Biotech, LLC., Philadelphia, PA, United States
| | - Lanette M. Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Evgeniy Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Zhang FY, Wu L, Zhang TN, Chen HH. KCTD15 acts as an anti-tumor factor in colorectal cancer cells downstream of the demethylase FTO and the m6A reader YTHDF2. Commun Biol 2024; 7:262. [PMID: 38438714 PMCID: PMC10912199 DOI: 10.1038/s42003-024-05880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Potassium Channel Tetramerization Domain Containing 15 (KCTD15) participates in the carcinogenesis of several solid malignancies; however, its role in colorectal cancer (CRC) remains unclear. Here we find that KCTD15 exhibits lower expression in CRC tissues as compared to para-carcinoma tissues. Tetracycline (tet)-induced overexpression and knockdown of KCTD15 confirms KCTD15 as an anti-proliferative and pro-apoptotic factor in CRC both in vitro and in xenografted tumors. N6-methyladenosine (m6A) is known to affect the expression, stabilization, and degradation of RNAs with this modification. We demonstrate that upregulation of fat mass and obesity-associated protein (FTO), a classical m6A eraser, prevents KCTD15 mRNA degradation in CRC cells. Less KCTD15 RNA is recognized by m6A 'reader' YTH N6-Methyladenosine RNA Binding Protein F2 (YTHDF2) in FTO-overexpressed cells. Moreover, KCTD15 overexpression decreases protein expression of histone deacetylase 1 (HDAC1) but increases acetylation of critical tumor suppressor p53 at Lys373 and Lys382. Degradation of p53 is delayed in CRC cells post-KCTD15 overexpression. We further show that the regulatory effects of KCTD15 on p53 are HDAC1-dependent. Collectively, we conclude that KCTD15 functions as an anti-growth factor in CRC cells, and its expression is orchestrated by the FTO-YTHDF2 axis. Enhanced p53 protein stabilization may contribute to KCTD15's actions in CRC cells.
Collapse
Affiliation(s)
- Fang-Yuan Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Wu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Huan-Huan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Balasco N, Esposito L, Smaldone G, Salvatore M, Vitagliano L. A Comprehensive Analysis of the Structural Recognition between KCTD Proteins and Cullin 3. Int J Mol Sci 2024; 25:1881. [PMID: 38339159 PMCID: PMC10856315 DOI: 10.3390/ijms25031881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
KCTD ((K)potassium Channel Tetramerization Domain-containing) proteins constitute an emerging class of proteins involved in fundamental physio-pathological processes. In these proteins, the BTB domain, which represents the defining element of the family, may have the dual role of promoting oligomerization and favoring functionally important partnerships with different interactors. Here, by exploiting the potential of recently developed methodologies for protein structure prediction, we report a comprehensive analysis of the interactions of all KCTD proteins with their most common partner Cullin 3 (Cul3). The data here presented demonstrate the impressive ability of this approach to discriminate between KCTDs that interact with Cul3 and those that do not. Indeed, reliable and stable models of the complexes were only obtained for the 15 members of the family that are known to interact with Cul3. The generation of three-dimensional models for all KCTD-Cul3 complexes provides interesting clues on the determinants of the structural basis of this partnership as clear structural differences emerged between KCTDs that bind or do not bind Cul3. Finally, the availability of accurate three-dimensional models for KCTD-Cul3 interactions may be valuable for the ad hoc design and development of compounds targeting specific KCTDs that are involved in several common diseases.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | | | | | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| |
Collapse
|
5
|
Buono L, Iside C, Pecoraro G, De Matteo A, Beneduce G, Penta de Vera d'Aragona R, Parasole R, Mirabelli P, Vitagliano L, Salvatore M, Smaldone G. A Comprehensive Analysis of the Expression Profiles of KCTD Proteins in Acute Lymphoblastic Leukemia: Evidence of Selective Expression of KCTD1 in T-ALL. J Clin Med 2023; 12:jcm12113669. [PMID: 37297863 DOI: 10.3390/jcm12113669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Acute leukemia is the most common pediatric cancer. In most cases, this disease results from the malignant transformation of either the B-cell (B-ALL) or, less frequently, T-cell progenitors (T-ALL). Recently, a marked overexpression of KCTD15, a member of the emerging class of the potassium (K) channel tetramerization domain-containing proteins (KCTDs) has been detected in both patients and continuous cell lines as in vitro model systems. Because there is growing evidence of the key, yet diversified, roles played by KCTDs in cancers, we here report an exhaustive analysis of their expression profiles in both B-ALL and T-ALL patients. Although for most KCTDs, no significant alterations were found in these pathological states, for some members of the family, significant up- and down-regulations were detected in comparison with the values found in healthy subjects in the transcriptome analysis. Among these, particularly relevant is the upregulation of the closely related KCTD1 and KCTD15 in T-ALL patients. Interestingly, KCTD1 is barely expressed in both unaffected controls and B-ALL patients. Therefore, not only does this analysis represent the first study in which the dysregulation of all KCTDs is simultaneously evaluated in specific pathological contexts, but it also provides a promising T-ALL biomarker that could be suitable for clinical applications.
Collapse
Affiliation(s)
- Lorena Buono
- IRCCS SYNLAB SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Concetta Iside
- IRCCS SYNLAB SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | | | - Antonia De Matteo
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | - Giuliana Beneduce
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | | | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | - Peppino Mirabelli
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, 80122 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., 80134 Napoli, Italy
| | | | | |
Collapse
|
6
|
Page JJ, Almanza JR, Xiong S, Aishwarya V, Kroner A. Self-delivering mRNA inhibitors of MK2 improve outcomes after spinal cord injury. J Neuroimmunol 2023; 379:578103. [PMID: 37172370 DOI: 10.1016/j.jneuroim.2023.578103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 05/14/2023]
Abstract
Functional recovery and tissue damage after spinal cord injury (SCI) are influenced by secondary damage mechanisms, including inflammation. The inflammatory response after SCI relies on a variety of cell types with both protective and cytotoxic functions. The macrophage derived MAPK-activated protein kinase 2 has been described as a critical regulator of inflammation with detrimental function after SCI. Targeted modification of inflammatory effector molecules after SCI faces challenges of optimal timing, dosage and location of administration. Modified RNA inhibitors, FANA antisense oligonucleotides, are promising inhibitors due to their stability, local penetration of cells and high efficacy in targeted suppression. Here, we describe the use of anti- MAPK-activated protein kinase 2 FANA antisense oligonucleotides in a mouse model of contusional SCI. The most efficient inhibitor was selected with in vitro and in vivo techniques and then applied via intrathecal injections after SCI. This treatment resulted in improved gait applying DigiGait assessments and tissue preservation, indicating the usefulness of the target and inhibition approach.
Collapse
Affiliation(s)
- Justin J Page
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Shuana Xiong
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Veenu Aishwarya
- AUM LifeTech, Inc., 3675 Market Street, Suite 200, Philadelphia, PA 19104, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Smaldone G, Pecoraro G, Pane K, Franzese M, Ruggiero A, Vitagliano L, Salvatore M. The Oncosuppressive Properties of KCTD1: Its Role in Cell Growth and Mobility. BIOLOGY 2023; 12:biology12030481. [PMID: 36979172 PMCID: PMC10045846 DOI: 10.3390/biology12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
The KCTD protein family is traditionally regarded as proteins that play key roles in neurological physiopathology. However, new studies are increasingly demonstrating their involvement in many other biological processes, including cancers. This is particularly evident for KCTD proteins not involved in protein ubiquitination and degradation, such as KCTD1. We explored the role of KCTD1 in colorectal cancer by knocking down this protein in the human colon adenocarcinoma cell line, SW480. We re-assessed its ability to downregulate β-catenin, a central actor in the WNT/β-catenin signalling pathway. Interestingly, opposite effects are observed when the protein is upregulated in CACO2 colorectal cancer cells. Moreover, interrogation of the TCGA database indicates that KCTD1 downregulation is associated with β-catenin overexpression in colorectal cancer patients. Indeed, knocking down KCTD1 in SW480 cells led to a significant increase in their motility and stemness, two important tumorigenesis traits, suggesting an oncosuppressor role for KCTD1. It is worth noting that similar effects are induced on colorectal cancer cells by the misregulation of KCTD12, a protein that is distantly related to KCTD1. The presented results further expand the spectrum of KCTD1 involvement in apparently unrelated physiopathological processes. The similar effects produced on colorectal cancer cell lines by KCTD1 and KCTD12 suggest novel, previously unreported analogous activities among members of the KCTD protein family.
Collapse
Affiliation(s)
| | | | - Katia Pane
- IRCCS SYNLAB SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., 80134 Napoli, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., 80134 Napoli, Italy
| | | |
Collapse
|
8
|
Donde MJ, Rochussen AM, Kapoor S, Taylor AI. Targeting non-coding RNA family members with artificial endonuclease XNAzymes. Commun Biol 2022; 5:1010. [PMID: 36153384 PMCID: PMC9509326 DOI: 10.1038/s42003-022-03987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) offer a wealth of therapeutic targets for a range of diseases. However, secondary structures and high similarity within sequence families make specific knockdown challenging. Here, we engineer a series of artificial oligonucleotide enzymes (XNAzymes) composed of 2'-deoxy-2'-fluoro-β-D-arabino nucleic acid (FANA) that specifically or preferentially cleave individual ncRNA family members under quasi-physiological conditions, including members of the classic microRNA cluster miR-17~92 (oncomiR-1) and the Y RNA hY5. We demonstrate self-assembly of three anti-miR XNAzymes into a biostable catalytic XNA nanostructure, which targets the cancer-associated microRNAs miR-17, miR-20a and miR-21. Our results provide a starting point for the development of XNAzymes as a platform technology for precision knockdown of specific non-coding RNAs, with the potential to reduce off-target effects compared with other nucleic acid technologies.
Collapse
Affiliation(s)
- Maria J Donde
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Adam M Rochussen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Saksham Kapoor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
KCTD15 Is Overexpressed in her2+ Positive Breast Cancer Patients and Its Silencing Attenuates Proliferation in SKBR3 CELL LINE. Diagnostics (Basel) 2022; 12:diagnostics12030591. [PMID: 35328144 PMCID: PMC8947324 DOI: 10.3390/diagnostics12030591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Studies carried out in the last decade have demonstrated that the members of the KCTD protein family play active roles in carcinogenesis. Very recently, it has been reported that KCTD15, a protein typically associated with other physio-pathological processes, is involved in medulloblastoma and leukemia. Starting with some preliminary indications that emerged from the analysis of online databases that suggested a possible overexpression of KCTD15 in breast cancer, in this study, we evaluated the expression levels of the protein in breast cancer cell lines and in patients and the effects of its silencing in the HER2+ cell model. The analysis of the KCTD15 levels indicates a significant overexpression of the protein in Luminal A and Luminal B breast cancer patients as well as in the related cell lines. The greatest level of over-expression of the protein was found in HER2+ patients and in the related SKBR3 cell line model system. The effects of KCTD15 silencing in terms of cell proliferation, cell cycle, and sensitivity to doxorubicin were evaluated in the SKBR3 cell line. Notably, the KCTD15 silencing in SKBR3 cells by CRISPR/CAS9 technology significantly attenuates their proliferation and cell cycle progression. Finally, we demonstrated that KCT15 silencing also sensitized SKBR3 cells to the cytotoxic agent doxorubicin, suggesting a possible role of the protein in anti HER2+ therapeutic strategies. Our results highlight a new possible player in HER2 breast cancer carcinogenesis, paving the way for its use in breast cancer diagnosis and therapy.
Collapse
|
10
|
Xia J, Wang M, Zhu Y, Bu C, Li T. Differential mRNA and long noncoding RNA expression profiles in pediatric B-cell acute lymphoblastic leukemia patients. BMC Pediatr 2022; 22:10. [PMID: 34980027 PMCID: PMC8722040 DOI: 10.1186/s12887-021-03073-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides (nt) that are involved in the pathogenesis and development of various cancers including B cell acute lymphoblastic leukemia (B-ALL). To determine the potential roles of lncRNAs involved in pathogenesis of B-ALL, we analyzed the expression profile of lncRNAs and mRNAs in B-ALL, respectively, and constructed lncRNAs/mRNAs interaction network. METHODS We performed RNA sequencing of 10 non-leukemic blood disease donors and 10 B-ALL patients for Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Interactions among mRNAs were predicted using the STRING database. Quantitative real time PCR (qRT-PCR) was performed to verify the RNA-seq data of lncRNAs and mRNAs. Potential functions of subtype-specific lncRNAs were determined by using coexpression-based analysis on distally (trans-pattern) located protein-coding genes. RESULTS A total of 1813 differentially expressed transcripts (DETs) and 2203 lncRNAs were identified. Moreover, 10 dysregulated lncRNAs and 10 mRNAs were randomly selected, and further assessed by RT-qPCR in vitro. Go and KEGG analysis demonstrated that the differentially expressed mRNAs were most closely associated with myeloid leukocyte activation and in transcriptional misregulation in cancer, respectively. In addition, co-expression analysis demonstrated that these lncRNAs, including MSTRG.27994.3, MSTRG.21740.1, ENST00000456341, MSTRG.14224.1 and MSTRG.20153.1, may mediate the pathogenesis and development of B-ALL via lncRNA-mRNA network interactions. CONCLUSIONS These results showed that several mRNAs and lncRNAs are aberrantly expressed in the bone marrow of B-ALL patients and play potential roles in B-ALL development, and be useful for diagnostic and/or prognostic purposes in pediatric B-ALL. DATA AVAILABILITY The datasets used during our study are available through HARVARD Dataverse Persistent ID doi: https://doi.org/10.7910/DVN/LK9T4Z .
Collapse
Affiliation(s)
- Jing Xia
- Department of Pediatric Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Mengjie Wang
- Department of hematology & oncology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Yi Zhu
- Department of hematology & oncology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Chaozhi Bu
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, China.
| | - Tianyu Li
- Department of hematology & oncology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
11
|
AlphaFold-Predicted Structures of KCTD Proteins Unravel Previously Undetected Relationships among the Members of the Family. Biomolecules 2021; 11:biom11121862. [PMID: 34944504 PMCID: PMC8699099 DOI: 10.3390/biom11121862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
One of the most striking features of KCTD proteins is their involvement in apparently unrelated yet fundamental physio-pathological processes. Unfortunately, comprehensive structure–function relationships for this protein family have been hampered by the scarcity of the structural data available. This scenario is rapidly changing due to the release of the protein three-dimensional models predicted by AlphaFold (AF). Here, we exploited the structural information contained in the AF database to gain insights into the relationships among the members of the KCTD family with the aim of facilitating the definition of the structural and molecular basis of key roles that these proteins play in many biological processes. The most important finding that emerged from this investigation is the discovery that, in addition to the BTB domain, the vast majority of these proteins also share a structurally similar domain in the C-terminal region despite the absence of general sequence similarities detectable in this region. Using this domain as reference, we generated a novel and comprehensive structure-based pseudo-phylogenetic tree that unraveled previously undetected similarities among the protein family. In particular, we generated a new clustering of the KCTD proteins that will represent a solid ground for interpreting their many functions.
Collapse
|
12
|
Smaldone G, Coppola L, Pane K, Franzese M, Beneduce G, Parasole R, Menna G, Vitagliano L, Salvatore M, Mirabelli P. KCTD15 deregulation is associated with alterations of the NF-κB signaling in both pathological and physiological model systems. Sci Rep 2021; 11:18237. [PMID: 34521919 PMCID: PMC8440651 DOI: 10.1038/s41598-021-97775-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Like other KCTD proteins, KCTD15 is involved in important albeit distinct biological processes as cancer, neural crest formation, and obesity. Here, we characterized the role of KCTD15 in different physiological/pathological states to gain insights into its diversified function(s). The silencing of KCTD15 in MLL-rearranged leukemia models induced attenuation of the NF-κB pathway associated with a downregulation of pIKK-β and pIKB-α. Conversely, the activation of peripheral blood T cells upon PMA/ionomycin stimulation remarkably upregulated KCTD15 and, simultaneously, pIKK-β and pIKB-α. Moreover, a significant upregulation of KCTD15 was also observed in CD34 hematopoietic stem/progenitor cells where the NF-κB pathway is physiologically activated. The association between KCTD15 upregulation and increased NF-κB signaling was confirmed by luciferase assay as well as KCTD15 and IKK-β proximity ligation and immunoprecipitation experiments. The observed upregulation of IKK-β by KCTD15 provides a novel and intriguing interpretative key for understanding the protein function in a wide class of physiological/pathological conditions ranging from neuronal development to cancer and obesity/diabetes.
Collapse
Affiliation(s)
| | - Luigi Coppola
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - Katia Pane
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | | | - Giuliana Beneduce
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129, Naples, Italy
| | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129, Naples, Italy
| | - Giuseppe Menna
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone n.16, 80134, Naples, Italy.
| | | | | |
Collapse
|
13
|
Identification of prognostic biomarkers related to the tumor microenvironment in thyroid carcinoma. Sci Rep 2021; 11:16239. [PMID: 34376710 PMCID: PMC8355328 DOI: 10.1038/s41598-021-90538-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid Carcinoma (THCA) is the most common endocrine tumor that is mainly treated using surgery and radiotherapy. In addition, immunotherapy is a recently developed treatment option that has played an essential role in the management of several types of tumors. However, few reports exist on the use of immunotherapy to treat THCA. The study downloaded the miRNA, mRNA and lncRNA data for THCA patients from the TCGA database ( https://portal.gdc.cancer.gov/ ). Thereafter, the tumor samples were divided into cold and hot tumors, based on the immune score of the tumor microenvironment. Moreover, the differentially expressed lncRNAs and miRNAs were obtained. Finally, the study jointly constructed a ceRNA network through differential analysis of the mRNA data for cold and hot tumors. The study first assessed the level of immune infiltration in the THCA tumor microenvironment then divided the samples into cold and hot tumors, based on the immune score. Additionally, a total of 568 up-regulated and 412 down-regulated DEGs were screened by analyzing the differences between hot and cold tumors. Thereafter, the study examined the differentially expressed genes for lncRNA and miRNA. The results revealed 629 differentially expressed genes related to lncRNA and 114 associated with miRNA. Finally, a ceRNA network of the differentially expressed genes was constructed. The results showed a five-miRNA hubnet, i.e., hsa-mir-204, hsa-mir-128, hsa-mir-214, hsa-mir-150 and hsa-mir-338. The present study identified the immune-related mRNA, lncRNA and miRNA in THCA then constructed a ceRNA network. These results are therefore important as they provide more insights on the immune mechanisms in THCA. The findings also provides additional information for possible THCA immunotherapy.
Collapse
|
14
|
Orlandella FM, Smaldone G, Salvatore G, Vitagliano L, Cianflone A, Parasole R, Beneduce G, Menna G, Salvatore M, Mirabelli P. The lncRNA TEX41 is upregulated in pediatric B-Cells Acute Lymphoblastic Leukemia and it is necessary for leukemic cell growth. Biomark Res 2021; 9:54. [PMID: 34233751 PMCID: PMC8261931 DOI: 10.1186/s40364-021-00307-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) represent a diverse class of RNAs involved in the regulation of various physiological and pathological cellular processes, including transcription, intracellular trafficking, and chromosome remodeling. LncRNAs deregulation was linked to the development and progression of various cancer types, such as acute leukemias. In this context, lncRNAs were also evaluated as a novel class of biomarkers for cancer diagnosis and prognosis. Here, we analyzed TEX41 in childhood B cell acute lymphoid leukemia (B-ALL). Methods Total RNA was extracted from pediatric B-ALL patients (at diagnosis and after induction of therapy) and from healthy subjects. Total RNA was also extracted from different leukemia cell line models. The expression level of TEX41 was evaluated by q-RT-PCR. Also, the dataset deposited by St. Jude Children’s Research Hospital was consulted. Furthermore, the silencing of TEX41 in RS4;11 cell line was obtained by 2′-Deoxy, 2′Fluroarabino Nucleic Acids (2′F-ANAs) Oligonucleotides, and the effect on cell proliferation was evaluated. Cell cycle progression and its regulators were analyzed by flow cytometry and immunoblotting. Results We exploited the St Jude Cloud database and found that TEX41 is a lncRNA primarily expressed in the case of B-ALL (n = 79) while its expression levels are low/absent for T-cell ALL (n = 25) and acute myeloid leukemia (n = 38). The association of TEX41 with B-ALL was confirmed by real-time PCR assays. TEX41 disclosed increased expression levels in bone marrow from patients with B-ALL at diagnosis, while its expression levels became low or absent when retested in Bone Marrow cells of the same patient after 1 month of induction therapy. Also, silencing experiments performed on RS4;11 cells showed that TEX41 downregulation impaired in vitro leukemic cell growth determining their arrest in the G2-M phase and the deregulation of cell cycle proteins. Conclusions Our findings highlight that TEX41 is an upregulated lncRNA in the case of B-ALL and this feature makes it a novel potential biomarker for the diagnosis of this leukemia subtype in pediatric patients. Finally, TEX41 expression seems to be critical for leukemic proliferation, indeed, silencing experiments targeting TEX41 mRNA in the RS4;11 cell line hampered in vitro cell growth and cell cycle progression, by inducing G2-M arrest as confirmed propidium iodide staining and by the upregulation of p53 and p21 proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00307-7.
Collapse
Affiliation(s)
| | | | - Giuliana Salvatore
- IRCCS, SDN, Via E. Gianturco 113, 80143, Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, University of Naples Parthenope, Via Medina 40, 80133, Naples, Italy.,CEINGE - Biotecnologie Avanzate S.c.a.r.l, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R, Via Mezzocannone 16, 80134, Napoli, Italy
| | | | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Giuliana Beneduce
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Giuseppe Menna
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | | | | |
Collapse
|
15
|
Coppola L, Cianflone A, Pane K, Franzese M, Mirabelli P, Salvatore M. The impact of different preanalytical methods related to CA 15-3 determination in frozen human blood samples: a systematic review. Syst Rev 2021; 10:102. [PMID: 33836821 PMCID: PMC8033739 DOI: 10.1186/s13643-021-01631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The determination of CA 15-3 is useful for monitoring breast cancer patients. Several retrospective studies determined CA 15-3 levels in frozen samples to evaluate the sensitivity and specificity of novel biomarkers in relation to breast cancer; however, freeze-thaw cycles, as well as preanalytical variables before sample storage, are not always reported. Here, we analyzed the current scientific literature to identify possible critical aspects related to CA 15-3 determination in frozen-stored human serum/plasma samples. METHODS We obtained data from 4 different bibliographic databases: Web of Science, Embase, PubMed, and Cochrane Library. We followed the PRISMA guidelines to screen and select the eligible articles discussed in the final revision. RESULTS Initially, 674 scientific papers were evaluated, and after the application of the screening and eligibility criteria, 18 studies were included in the qualitative synthesis. The analysis reported an important level of heterogeneity concerning the preanalytical phase before sample storage. CONCLUSION Although advances in healthcare have been achieved using certified workflows in medical diagnostics, standardized preanalytical processes are not always applied when referring to frozen-stored biosamples. Biobanks will guarantee the best possible conditions for the storage of human biological samples to be used in clinical research. The use of certified bioresources will favor the optimal development and introduction of new disease biomarkers.
Collapse
Affiliation(s)
| | | | - Katia Pane
- IRCCS SDN, Via E. Gianturco, 80143, Naples, Italy
| | | | | | | |
Collapse
|
16
|
Use of a Self-Delivering Anti-CCL3 FANA Oligonucleotide as an Innovative Approach to Target Inflammation after Spinal Cord Injury. eNeuro 2021; 8:ENEURO.0338-20.2021. [PMID: 33632814 PMCID: PMC7986543 DOI: 10.1523/eneuro.0338-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
Secondary damage after spinal cord injury (SCI) occurs because of a sequence of events after the initial injury, including exacerbated inflammation that contributes to increased lesion size and poor locomotor recovery. Thus, mitigating secondary damage is critical to preserve neural tissue and improve neurologic outcome. In this work, we examined the therapeutic potential of a novel antisense oligonucleotide (ASO) with special chemical modifications [2′-deoxy-2-fluoro-D-arabinonucleic acid (FANA) ASO] for specifically inhibiting an inflammatory molecule in the injured spinal cord. The chemokine CCL3 plays a complex role in the activation and attraction of immune cells and is upregulated in the injured tissue after SCI. We used specific FANA ASO to inhibit CCL3 in a contusive mouse model of murine SCI. Our results show that self-delivering FANA ASO molecules targeting the chemokine CCL3 penetrate the spinal cord lesion site and suppress the expression of CCL3 transcripts. Furthermore, they reduce other proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin (IL)-1β after SCI. In summary, we demonstrate for the first time the potential of FANA ASO molecules to penetrate the spinal cord lesion site to specifically inhibit CCL3, reducing proinflammatory cytokines and improve functional recovery after SCI. This novel approach may be used in new treatment strategies for SCI and other pathologic conditions of the CNS.
Collapse
|
17
|
Fakih HH, Katolik A, Malek-Adamian E, Fakhoury JJ, Kaviani S, Damha MJ, Sleiman HF. Design and enhanced gene silencing activity of spherical 2'-fluoroarabinose nucleic acids (FANA-SNAs). Chem Sci 2021; 12:2993-3003. [PMID: 34164068 PMCID: PMC8179377 DOI: 10.1039/d0sc06645a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drug delivery vectors for nucleic acid therapeutics (NATs) face significant barriers for translation into the clinic. Spherical nucleic acids (SNAs) – nanoparticles with an exterior shell made up of DNA strands and a hydrophobic interior – have recently shown great potential as vehicles to improve the biodistribution and efficacy of NATs. To date, SNA design has not taken advantage of the powerful chemical modifications available to NATs. Here, we modify SNAs with 2′-deoxy-2′-fluoro-d-arabinonucleic acid (FANA-SNA), and show increased stability, enhanced gene silencing potency and unaided uptake (gymnosis) as compared to free FANA. By varying the spacer region between the nucleic acid strand and the attached hydrophobic polymer, we show that a cleavable DNA based spacer is essential for maximum activity. This design feature will be important when implementing functionalized nucleic acids into nanostructures for gene silencing. The modularity of the FANA-SNA was demonstrated by silencing two different targets. Transfection-free delivery was superior for the modified SNA compared to the free FANA oligonucleotide. Optimizing FANA modified spherical nucleic acids (FANA-SNAs) for highly efficient delivery of nucleic acid therapeutics.![]()
Collapse
Affiliation(s)
- Hassan H Fakih
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | - Adam Katolik
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | | | - Johans J Fakhoury
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | - Sepideh Kaviani
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | - Masad J Damha
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
18
|
lncRNAs-mRNAs Co-Expression Network Underlying Childhood B-Cell Acute Lymphoblastic Leukaemia: A Pilot Study. Cancers (Basel) 2020; 12:cancers12092489. [PMID: 32887470 PMCID: PMC7564554 DOI: 10.3390/cancers12092489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute lymphoblastic leukemia (ALL) is one of the most common childhood cancers. The ALL onset involves abnormal proliferation and arrest of differentiation of B or T cell progenitors. Recently, long non–coding RNAs (lncRNAs) gained great interest in the B–ALL leukemogenesis, however, so far few “omic” studies investigate lncRNAs and protein–coding gene networks. In our retrospective study, we conceived an integrated bioinformatic approach, by using NGS platform, to discover lncRNAs strongly correlated with aberrantly expressed protein–coding genes. We provided dysregulated lncRNA–mRNA pairs potentially underlying B–ALL pathogenesis. Diagnosis incidence peak of ALL appears approximatively between 1 and 19 years old. lncRNAs may be of clinical utility as non–invasive biomarker for B–ALL onset or therapy response in support of precision medicine. The identification of lncRNA as key regulators in B–ALL could lead to the identification of the altered pathways able to sustain the leukemic growth. Abstract Long non–coding RNAs (lncRNAs) are emerging as key gene regulators in the pathogenesis and development of various cancers including B lymphoblastic leukaemia (B–ALL). In this pilot study, we used RNA–Seq transcriptomic data for identifying novel lncRNA–mRNA cooperative pairs involved in childhood B–ALL pathogenesis. We conceived a bioinformatic pipeline based on unsupervised PCA feature extraction approach and stringent statistical criteria to extract potential childhood B–ALL lncRNA signatures. We then constructed a co–expression network of the aberrantly expressed lncRNAs (30) and protein–coding genes (754). We cross–validated our in–silico findings on an independent dataset and assessed the expression levels of the most differentially expressed lncRNAs and their co–expressed mRNAs through ex vivo experiments. Using the guilt–by–association approach, we predicted lncRNA functions based on their perfectly co–expressed mRNAs (Spearman’s correlation) that resulted closely disease–associated. We shed light on 24 key lncRNAs and their co–expressed mRNAs which may play an important role in B–ALL pathogenesis. Our results may be of clinical utility for diagnostic and/or prognostic purposes in paediatric B–ALL management.
Collapse
|
19
|
Smaldone G, Coppola L, Incoronato M, Parasole R, Ripaldi M, Vitagliano L, Mirabelli P, Salvatore M. KCTD15 Protein Expression in Peripheral Blood and Acute Myeloid Leukemia. Diagnostics (Basel) 2020; 10:diagnostics10060371. [PMID: 32512747 PMCID: PMC7345863 DOI: 10.3390/diagnostics10060371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Leukocytes are major cellular components of the inflammatory and immune response systems. After their generation in the bone marrow from hematopoietic stem cells, they maturate as granulocytes (neutrophils, eosinophils, and basophils), monocytes, and lymphocytes. The abnormal accumulation and proliferation of immature blood cells (blasts) lead to severe and widespread diseases such as leukemia. We have recently shown that KCTD15, a member of the potassium channel tetramerization domain containing protein family (KCTD), is remarkably upregulated in leukemic B-cells. Here, we extend our investigation by monitoring the KCTD15 expression levels in circulating lymphocytes, monocytes, and granulocytes, as well as in leukemia cells. Significant differences in the expression level of KCTD15 were detected in normal lymphocytes, monocytes, and granulocytes. Interestingly, we also found overexpression of the protein following leukemic transformation in the case of myeloid cell lineage. Indeed, KCTD15 was found to be upregulated in K562 and NB4 cells, as well as in HL-60 cell lines. This in vitro finding was corroborated by the analysis of KCTD15 mRNA of acute myeloid leukemia (AML) patients reported in the Microarray Innovations in Leukemia (MILE) dataset. Collectively, the present data open interesting perspectives for understanding the maturation process of leukocytes and for the diagnosis/therapy of acute leukemias.
Collapse
Affiliation(s)
- Giovanni Smaldone
- IRCCS SDN, Napoli, Via E. Gianturco 113, 80143 Naples, Italy; (G.S.); (L.C.); (M.I.); (M.S.)
| | - Luigi Coppola
- IRCCS SDN, Napoli, Via E. Gianturco 113, 80143 Naples, Italy; (G.S.); (L.C.); (M.I.); (M.S.)
| | - Mariarosaria Incoronato
- IRCCS SDN, Napoli, Via E. Gianturco 113, 80143 Naples, Italy; (G.S.); (L.C.); (M.I.); (M.S.)
| | - Rosanna Parasole
- Department of Pediatric Hematology-Oncology, Santobono-Pausilipon Hospital, 80129 Naples, Italy; (R.P.); (M.R.)
| | - Mimmo Ripaldi
- Department of Pediatric Hematology-Oncology, Santobono-Pausilipon Hospital, 80129 Naples, Italy; (R.P.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., 80134 Napoli, Italy
- Correspondence: (L.V.); (P.M.)
| | - Peppino Mirabelli
- IRCCS SDN, Napoli, Via E. Gianturco 113, 80143 Naples, Italy; (G.S.); (L.C.); (M.I.); (M.S.)
- Correspondence: (L.V.); (P.M.)
| | - Marco Salvatore
- IRCCS SDN, Napoli, Via E. Gianturco 113, 80143 Naples, Italy; (G.S.); (L.C.); (M.I.); (M.S.)
| |
Collapse
|