1
|
Poelstra JW, Montero BK, Lüdemann J, Yang Z, Rakotondranary SJ, Hohenlohe P, Stetter N, Ganzhorn JU, Yoder AD. RADseq data reveal a lack of admixture in a mouse lemur contact zone contrary to previous microsatellite results. Proc Biol Sci 2022; 289:20220596. [PMID: 35946151 PMCID: PMC9364002 DOI: 10.1098/rspb.2022.0596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microsatellites have been a workhorse of evolutionary genetic studies for decades and are still commonly in use for estimating signatures of genetic diversity at the population and species level across a multitude of taxa. Yet, the very high mutation rate of these loci is a double-edged sword, conferring great sensitivity at shallow levels of analysis (e.g. paternity analysis) but yielding considerable uncertainty for deeper evolutionary comparisons. For the present study, we used reduced representation genome-wide data (restriction site-associated DNA sequencing (RADseq)) to test for patterns of interspecific hybridization previously characterized using microsatellite data in a contact zone between two closely related mouse lemur species in Madagascar (Microcebus murinus and Microcebus griseorufus). We revisit this system by examining populations in, near, and far from the contact zone, including many of the same individuals that had previously been identified as hybrids with microsatellite data. Surprisingly, we find no evidence for admixed nuclear ancestry. Instead, re-analyses of microsatellite data and simulations suggest that previously inferred hybrids were false positives and that the program NewHybrids can be particularly sensitive to erroneously inferring hybrid ancestry. Combined with results from coalescent-based analyses and evidence for local syntopic co-occurrence, we conclude that the two mouse lemur species are in fact completely reproductively isolated, thus providing a new understanding of the evolutionary rate whereby reproductive isolation can be achieved in a primate.
Collapse
Affiliation(s)
- Jelmer W. Poelstra
- Department of Biology, Duke University, Durham, NC 27708, USA,Molecular and Cellular Imaging Center, Ohio State University, Wooster, OH 44691, USA
| | - B. Karina Montero
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany
| | - Jan Lüdemann
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - S. Jacques Rakotondranary
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany,Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, PO Box 906, Antananarivo 101, Madagascar
| | - Paul Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Nadine Stetter
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany,Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Jörg U. Ganzhorn
- Institute of Zoology, Department of Animal Ecology and Conservation, Universität Hamburg, Hamburg, 20146, Germany
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Teixeira H, van Elst T, Ramsay MS, Rakotondravony R, Salmona J, Yoder AD, Radespiel U. RADseq Data Suggest Occasional Hybridization between Microcebus murinus and M. ravelobensis in Northwestern Madagascar. Genes (Basel) 2022; 13:913. [PMID: 35627298 PMCID: PMC9140448 DOI: 10.3390/genes13050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
The occurrence of natural hybridization has been reported in a wide range of organisms, including primates. The present study focuses on the endemic lemurs of Madagascar, primates for which only a few species occur in sympatry or parapatry with congeners, thereby creating limited opportunity for natural hybridization. This study examines RADseq data from 480 individuals to investigate whether the recent expansion of Microcebus murinus towards the northwest and subsequent secondary contact with Microcebus ravelobensis has resulted in the occurrence of hybridization between the two species. Admixture analysis identified one individual with 26% of nuclear admixture, which may correspond to an F2- or F3-hybrid. A composite-likelihood approach was subsequently used to test the fit of alternative phylogeographic scenarios to the genomic data and to date introgression. The simulations yielded support for low levels of gene flow (2Nm0 = 0.063) between the two species starting before the Last Glacial Maximum (between 54 and 142 kyr). Since M. murinus most likely colonized northwestern Madagascar during the Late Pleistocene, the rather recent secondary contact with M. ravelobensis has likely created the opportunity for occasional hybridization. Although reproductive isolation between these distantly related congeners is not complete, it is effective in maintaining species boundaries.
Collapse
Affiliation(s)
- Helena Teixeira
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (H.T.); (T.v.E.); (M.S.R.)
| | - Tobias van Elst
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (H.T.); (T.v.E.); (M.S.R.)
| | - Malcolm S. Ramsay
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (H.T.); (T.v.E.); (M.S.R.)
- Department of Anthropology, University of Toronto, 19 Russell St., Toronto, ON M5S 2S2, Canada
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, 5 Rue Georges V—Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga 401, Madagascar;
- Faculté des Sciences, de Technologies et de l’Environnement, University of Mahajanga, 5 Rue Georges V—Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga 401, Madagascar
| | - Jordi Salmona
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France;
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (H.T.); (T.v.E.); (M.S.R.)
| |
Collapse
|
3
|
DePasquale A, Hogan JD, Guadamuz Araya C, Dominy NJ, Melin AD. Aeroscapes and the Sensory Ecology of Olfaction in a Tropical Dry Forest. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.849281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aeroscapes—dynamic patterns of air speed and direction—form a critical component of landscape ecology by shaping numerous animal behaviors, including movement, foraging, and social and/or reproductive interactions. Aeroecology is particularly critical for sensory ecology: air is the medium through which many sensory signals and cues propagate, inherently linking sensory perception to variables such as air speed and turbulence. Yet, aeroscapes are seldom explicitly considered in studies of sensory ecology and evolution. A key first step towards this goal is to describe the aeroscapes of habitats. Here, we quantify the variation in air movement in two successional stages (early and late) of a tropical dry forest in Costa Rica. We recorded air speeds every 10 seconds at five different heights simultaneously. Average air speeds and turbulence increased with height above the ground, generally peaked midday, and were higher overall at the early successional forest site. These patterns of lower air speed and turbulence at ground level and overnight have important implications for olfactory foraging niches, as chemotaxis is most reliable when air movement is low and steady. We discuss our results in the context of possible selective pressures and observed variation in the foraging ecology, behaviors, and associated morphologies of resident vertebrates, with a focus on mammals. However, these data also have relevance to researchers studying socioecology, invertebrate biology, plant evolution, community ecology and more. Further investigation into how animals use different forest types, canopy heights and partition activities across different times of day will further inform our understanding of how landscape and sensory ecology are interrelated. Finally, we emphasize the timeliness of monitoring aeroecology as global wind patterns shift with climate change and human disturbance alters forest structure, which may have important downstream consequences for biological conservation.
Collapse
|
4
|
Hartje V, Illemann MJ, Schmidtke D. Motion cues increase focused attention towards purely visual stimuli in a nocturnal primate and drive stimulus interaction and approach/avoidance in a context-dependent manner. Am J Primatol 2021; 83:e23286. [PMID: 34169554 DOI: 10.1002/ajp.23286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Visual information is of pivotal ecological importance to monkeys, apes, and humans, whereas its role in nocturnal primate ecology is less well understood. We explored how purely visual information modulates the behavior of a nocturnal primate. Abstract (shape), photographic (shape + detail), or video (shape + detail + motion) representations of arthropod prey (Zophobas morio; food context) or a male conspecific (social context) were systematically presented to 22 individuals of the gray mouse lemur (Microcebus murinus) using a touchscreen. We assessed stimulus-directed touch interactions, durations of focused visual attention towards the different stimuli, and durations spent in the half of the setup-chamber more distant to the touchscreen (as quantification of approach/avoidance). Focused attention towards the stimulus generally increased from abstract and photographic to videographic stimuli. For the food context, indications for a parallel increase in stimulus-directed touch interactions from abstract stimulus to video were found. Approach/avoidance was independent of the stimulus type within both contexts. A comparison between the contexts under the video condition revealed higher durations of visual attention and lower stimulus avoidance in the food context compared to the social context. The number of touch interactions with the video stimulus was not generally context-dependent, but context-dependency related to sex: In the food context, animals with high and low numbers of touch interactions were equally distributed across sexes. In the social context, females showed the highest numbers of touch interactions. Numbers in males declined compared to the food context. Our results demonstrate for the first time that purely visual information modulates mouse lemur behavior and focused attention in a content- and context-specific manner, suggesting that vision is of high importance for the ecology of these nocturnal primates. The findings emphasize the need for further vision-based experiments to gain deeper insight into the evolution of visual information processing and cognition in nocturnal primates.
Collapse
Affiliation(s)
- Valeria Hartje
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Michele J Illemann
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
5
|
Kollikowski A, Jeschke S, Radespiel U. Experimental Evaluation of Spontaneous Olfactory Discrimination in Two Nocturnal Primates (Microcebus murinus and M. lehilahytsara). Chem Senses 2021; 45:581-592. [PMID: 32710747 DOI: 10.1093/chemse/bjaa051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Solitary species often employ chemocommunication to facilitate mate localization. In the solitarily foraging, nocturnal mouse lemurs (Microcebus spp.), females advertise their short period of estrus acoustically and by increased scent marking, whereas males search widely for receptive females. Both sexes can be trained by operant conditioning to discriminate conspecific from heterospecific urine scent. However, it is not known, if males during and outside the reproductive season show different spontaneous interest in conspecific female urine, and if urine from estrous females elicits a higher investigation response than that from diestrous females. We established a spontaneous discrimination paradigm and quantified olfactory investigation responses of 21 captive male mouse lemurs of M. lehilahytsara and M. murinus when presenting 1 conspecific and 1 heterospecific female urine odor sample simultaneously. Overall, M. murinus investigated stimuli significantly longer than M. lehilahytsara. Moreover, males of M. murinus showed significantly longer olfactory investigation at conspecific urine samples during but not outside the reproductive season. This indicates that female urinary cues are spontaneously discriminated by male M. murinus and that this discrimination is more relevant during the reproductive season. However, males of both species did not show different responses toward urine samples from estrous versus diestrous females. Finally, male age did not correlate with the overall duration of olfactory investigation, and investigation levels were similar when testing with fresh or frozen urine samples. In conclusion, this new spontaneous discrimination paradigm provides a useful additional tool to study olfactory communication of nocturnal primates from the receiver's perspective.
Collapse
Affiliation(s)
- Annika Kollikowski
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg, Hannover, Germany
| | - Selina Jeschke
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg, Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg, Hannover, Germany
| |
Collapse
|
6
|
Caspers J, Radespiel U, Zimmermann E, Schulz S. Volatile Urinary Signals of Two Nocturnal Primates, Microcebus murinus and M. lehilahytsara. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|