1
|
Lee MH, Jeong H, Koo MA, Seon GM, Hong SH, Park YJ, Park JC. Sterilization of sealed PVDF pouches containing decellularized scaffold by electrical stimulation. Biotechnol J 2021; 16:e2100156. [PMID: 34374222 DOI: 10.1002/biot.202100156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
A terminal sterilization process for tissue engineering products, such as allografts and biomaterials is necessary to ensure complete removal of pathogenic microorganisms such as the bacteria, fungi and viruses. However, it can be difficult to sterilize allografts and artificial tissue models packaged in wet conditions without deformation. In this study, we investigated the sterilization effects of electrical stimulation (ES) and assessed its suitability by evaluating sterility assurance levels in pouches at a constant current. Stability of polyvinylidene fluoride pouches was determined by a sterility test performed after exposure to five microorganisms (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans) for 5 days; the sterility test was also performed with decellularized human dermal tissues inoculated with the five microorganisms. Sterilization using ES inactivated microorganisms both inside and outside of sealed pouches and caused no damage to the packaged tissue. Our results support the development of a novel system that involves ES sterilization for packaging of implantable biomaterials and human derived materials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Seoul, Republic of Korea
| | - HaKyeong Jeong
- Cellbiocontrol Laboratory, Department of Medical Engineering, Seoul, Republic of Korea.,Department of Medical Device Engineering and Management, Seoul, Republic of Korea
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Seoul, Republic of Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gyeung Mi Seon
- Cellbiocontrol Laboratory, Department of Medical Engineering, Seoul, Republic of Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Hee Hong
- Cellbiocontrol Laboratory, Department of Medical Engineering, Seoul, Republic of Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ye Jin Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Seoul, Republic of Korea.,Department of Medical Device Engineering and Management, Seoul, Republic of Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Seoul, Republic of Korea.,Department of Medical Device Engineering and Management, Seoul, Republic of Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|