1
|
Liu L, Peng J, Liu Q, Di Y. The plastid genome characters and phylogenetic status of the endemic species Trichosanthes sunhangii D. G. Zhang, Z. M. Li, Qun Liu & T. Deng 2021 (Cucurbitaceae) in the Shennongjia forestry district of China. Mitochondrial DNA B Resour 2024; 10:1-5. [PMID: 39776571 PMCID: PMC11703028 DOI: 10.1080/23802359.2024.2444606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Trichosanthes sunhangii (Cucurbitaceae) is an endemic species native to the Shennongjia forestry district of China, whose plastid genome was reported in this study. The whole genome exhibits the typical quadripartite structure with 156,906 bp in size. A total of 130 genes were identified, containing 85 protein-coding genes (CDS), 37 tRNA, and 8 rRNA genes. Phylogenetic reconstruction based on 83 shared CDS sequences reaffirmed the status of T. sunhangii within the Sect. Foliobracteola, revealing close relationships with morphologically similar species, T. kirilowii and T. rosthornii. Our findings will provide a significant foundation for future investigations into the evolution, conservation, and potential utilization of this species.
Collapse
Affiliation(s)
- Lufeng Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming, Yunnan, China
| | - Jingyi Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yining Di
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Deng C, Jia X, Chen S, Guo J, Zeng C, Chen Y, Zhu Q, Huang Y. The complete chloroplast genome sequence of Melothria scabra (Cucurbitaceae). Mitochondrial DNA B Resour 2024; 9:1648-1652. [PMID: 39640867 PMCID: PMC11619021 DOI: 10.1080/23802359.2024.2435901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Melothria scabra has gradually become an economically important plant worldwide. The complete chloroplast genome of M. scabra has a length of 156,744 bp, contains a large single-copy (LSC) region (86,387 bp), a small single-copy (SSC) region (18,055 bp), and two inverted repeats (IRs) with the same length of 26,151 bp. In total, 126 genes were detected, including 83 protein-encoding genes, 35 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. For phylogenetic analysis, M. scabra has a closer genetic relationship with Cucumis sativus and Citrullus lanatus. The complete chloroplast genome sequence of M. scabra would promote the germplasm exploration, phylogenetic relationships, and molecular biology researches in Melothria.
Collapse
Affiliation(s)
- Chan Deng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Xinbi Jia
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Siyue Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Jiaqi Guo
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Chenghong Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Yuewen Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Qianglong Zhu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Jo S, Yusupov Z, Choi S, Paik JH, Tojibaev KS. The complete plastome sequence of Datisca cannabina L. (Datiscaceae, Cucurbitales). Mitochondrial DNA B Resour 2024; 9:237-241. [PMID: 38313467 PMCID: PMC10836481 DOI: 10.1080/23802359.2024.2310133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/21/2024] [Indexed: 02/06/2024] Open
Abstract
In this study, we report the first complete plastome sequence of Datisca cannabina (GenBank acc. no. OP432690). The plastome had a typical quadripartite structure. Its size was 162,914 bp, consisting of 90,890 bp large single-copy (LSC), 19,296 bp small single-copy (SSC), and 26,364 bp inverted repeat (IR) regions. It contained 112 genes, including 78 protein-coding, 30 tRNA, and four rRNA genes. The infA gene was pseudogenized. Sixteen genes contain one intron and two genes (clpP and ycf3) had two introns. Our phylogenetic tree showed that D. cannabina formed a close relationship with Begoniaceae. However, further samples are required to determine the phylogenetic placement of Datiscaceae in Cucurbitales.
Collapse
Affiliation(s)
- Sangjin Jo
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | | | - Sangho Choi
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | | |
Collapse
|
4
|
Zhao YY, Chen MM, Duan BL, Xie QZ, Miao Q. The complete chloroplast genome sequence of Thladiantha nudiflora Hemsl. ex F.B.Forbes & Hemsl. 1887 (Cucurbitaceae). Mitochondrial DNA B Resour 2024; 9:138-142. [PMID: 38282981 PMCID: PMC10812858 DOI: 10.1080/23802359.2024.2305402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
Thladiantha nudiflora Hemsl. ex F.B.Forbes & Hemsl. 1887 (Cucurbitaceae) has been widely known as a traditional medicine plant. In this study, we sequenced, assembled, and annotated the complete chloroplast genome of T. nudiflora. The chloroplast genome of T. nudiflora is 156,824 base pair (bp) in length, containing a large single-copy region of 86,566 bp and a small single-copy region of 18,070 bp, separated by a pair of inverted repeats of 26,094 bp. The chloroplast genome contains 132 genes, including 87 protein-coding, 37 transfer RNA, and eight ribosomal RNA genes. Phylogenetic analysis of the chloroplast genome revealed that species of the genus Thladiantha were clustered together in the phylogenetic trees. This study will not only shed light on T. nudiflora's evolutionary position but also provide valuable chloroplast genomic information for future studies into the origins and diversification of the genus Thladiantha and the Cucurbitaceae family.
Collapse
Affiliation(s)
- Yan-Yan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Min-Min Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bai-Lin Duan
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing-Zhou Xie
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiang Miao
- Fuyang Center for Agro-technical Popularization of Hangzhou, Hangzhou, China
| |
Collapse
|
5
|
Raza M, Ortiz EM, Schwung L, Shigita G, Schaefer H. Resolving the phylogeny of Thladiantha (Cucurbitaceae) with three different target capture pipelines. BMC Ecol Evol 2023; 23:75. [PMID: 38087247 PMCID: PMC10714463 DOI: 10.1186/s12862-023-02185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Despite recent advances, reliable tools to simultaneously handle different types of sequencing data (e.g., target capture, genome skimming) for phylogenomics are still scarce. Here, we evaluate the performance of the recently developed pipeline Captus in comparison with the well-known target capture pipelines HybPiper and SECAPR. As test data, we analyzed newly generated sequences for the genus Thladiantha (Cucurbitaceae) for which no well-resolved phylogeny estimate has been available so far, as well as simulated reads derived from the genome of Arabidopsis thaliana. RESULTS Our pipeline comparisons are based on (1) the time needed for data assembly and locus extraction, (2) locus recovery per sample, (3) the number of informative sites in nucleotide alignments, and (4) the topology of the nuclear and plastid phylogenies. Additionally, the simulated reads derived from the genome of Arabidopsis thaliana were used to evaluate the accuracy and completeness of the recovered loci. In terms of computation time, locus recovery per sample, and informative sites, Captus outperforms HybPiper and SECAPR. The resulting topologies of Captus and SECAPR are identical for coalescent trees but differ when trees are inferred from concatenated alignments. The HybPiper phylogeny is similar to Captus in both methods. The nuclear genes recover a deep split of Thladiantha in two clades, but this is not supported by the plastid data. CONCLUSIONS Captus is the best choice among the three pipelines in terms of computation time and locus recovery. Even though there is no significant topological difference between the Thladiantha species trees produced by the three pipelines, Captus yields a higher number of gene trees in agreement with the topology of the species tree (i.e., fewer genes in conflict with the species tree topology).
Collapse
Affiliation(s)
- Mustafa Raza
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany
| | - Edgardo M Ortiz
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany
| | - Lea Schwung
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany
| | - Gentaro Shigita
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany
| | - Hanno Schaefer
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany.
| |
Collapse
|
6
|
Cai L, Pan R, Zeng Q, Zhang X, Zeng R, Zhu Q. The complete plastome sequence of Momordica cochinchinensis (Cucurbitaceae). Mitochondrial DNA B Resour 2023; 8:329-332. [PMID: 36876141 PMCID: PMC9980024 DOI: 10.1080/23802359.2023.2181649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Momordica cochinchinensis (Lour.) Spreng. is an important medicinal plant that is used to treat various diseases in South and Southeast Asia. In this study, the complete plastome of M. cochinchinensis was sequenced and found to exhibit a total length of 158,955 bp, with a large single copy (LSC) region of 87,924 bp and a small single copy (SSC) region of 18,479 bp, as well as with two inverted repeats (IRs) that were both 26,726 bp in length. In total, 129 genes were detected, comprising 86 protein-encoding genes, 8 ribosomal RNA (rRNA) genes, and 35 transfer RNA (tRNA) genes. Furthermore, the inferred phylogenetic tree confirmed that M. cochinchinensis belongs to the genus Momordica in the Cucurbitaceae family. The research results will be used for authenticating M. cochinchinensis plant materials and for analyzing the genetic diversity and phylogenetic relationships in Momordica.
Collapse
Affiliation(s)
- Lijuan Cai
- Nanchang Business College, Jiangxi Agricultural University, Gongqing, P. R. China
| | - Rao Pan
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Qun Zeng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Xiaoyan Zhang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Rongbin Zeng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Qianglong Zhu
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, P. R. China
| |
Collapse
|
7
|
Lozano-Fernandez J. A Practical Guide to Design and Assess a Phylogenomic Study. Genome Biol Evol 2022; 14:evac129. [PMID: 35946263 PMCID: PMC9452790 DOI: 10.1093/gbe/evac129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of "big data" molecular phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phylogenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological developments have consistently shown that the general belief of "more genes, more robustness" often does not apply, and because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The main aim of this article is to present what I consider as the ten most important points to take into consideration when planning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the technical robustness of phylogenomic studies or improve the experimental design of a project.
Collapse
Affiliation(s)
- Jesus Lozano-Fernandez
- Department of Genetics, Microbiology and Statistics, Biodiversity Research Institute (IRBio), University of Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain
- Institute of Evolutionary Biology (CSIC – Universitat Pompeu Fabra), Passeig marítim de la Barcelona 37-49, 08003 Barcelona, Spain
| |
Collapse
|
8
|
Bhowmick BK, Jha S. A critical review on cytogenetics of Cucurbitaceae with updates on Indian taxa. COMPARATIVE CYTOGENETICS 2022; 16:93-125. [PMID: 36761811 PMCID: PMC9849056 DOI: 10.3897/compcytogen.v16.i2.79033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/16/2022] [Indexed: 06/13/2023]
Abstract
The cytogenetic relationships in the species of Cucurbitaceae are becoming immensely important to answer questions pertaining to genome evolution. Here, a simplified and updated data resource on cytogenetics of Cucurbitaceae is presented on the basis of foundational parameters (basic, zygotic and gametic chromosome numbers, ploidy, genome size, karyotype) and molecular cytogenetics. We have revised and collated our own findings on seven agriculturally important Indian cucurbit species in a comparative account with the globally published reports. Chromosome count (of around 19% species) shows nearly three-fold differences while genome size (of nearly 5% species) shows 5.84-fold differences across the species. There is no significant correlation between chromosome numbers and nuclear genome sizes. The possible trend of evolution is discussed here based on molecular cytogenetics data, especially the types and distribution of nucleolus organizer regions (NORs). The review supersedes the scopes of general chromosome databases and invites scopes for continuous updates. The offline resource serves as an exclusive toolkit for research and breeding communities across the globe and also opens scope for future establishment of web-database on Cucurbitaceae cytogenetics.
Collapse
Affiliation(s)
- Biplab Kumar Bhowmick
- Department of Botany, Scottish Church College, 1&3, Urquhart Square, Kolkata-700006, West Bengal, IndiaScottish Church CollegeKolkataIndia
| | - Sumita Jha
- Plant Cytogenetics and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, IndiaUniversity of CalcuttaKolkataIndia
| |
Collapse
|
9
|
Escobari B, Borsch T, Quedensley TS, Gruenstaeudl M. Plastid phylogenomics of the Gynoxoid group (Senecioneae, Asteraceae) highlights the importance of motif-based sequence alignment amid low genetic distances. AMERICAN JOURNAL OF BOTANY 2021; 108:2235-2256. [PMID: 34636417 DOI: 10.1002/ajb2.1775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The genus Gynoxys and relatives form a species-rich lineage of Andean shrubs and trees with low genetic distances within the sunflower subtribe Tussilaginineae. Previous molecular phylogenetic investigations of the Tussilaginineae have included few, if any, representatives of this Gynoxoid group or reconstructed ambiguous patterns of relationships for it. METHODS We sequenced complete plastid genomes of 21 species of the Gynoxoid group and related Tussilaginineae and conducted detailed comparisons of the phylogenetic relationships supported by the gene, intron, and intergenic spacer partitions of these genomes. We also evaluated the impact of manual, motif-based adjustments of automatic DNA sequence alignments on phylogenetic tree inference. RESULTS Our results indicate that the inclusion of all plastid genome partitions is needed to infer well-supported phylogenetic trees of the Gynoxoid group. Whole plastome-based tree inference suggests that the genera Gynoxys and Nordenstamia are polyphyletic and form the core clade of the Gynoxoid group. This clade is sister to a clade of Aequatorium and Paragynoxys and also includes some but not all representatives of Paracalia. CONCLUSIONS The concatenation and combined analysis of all plastid genome partitions and the construction of manually-curated, motif-based DNA sequence alignments are found to be instrumental in the recovery of well-supported relationships of the Gynoxoid group. We demonstrate that the correct assessment of homology in genome-level plastid sequence data sets is crucial for subsequent phylogeny reconstruction and that the manual post-processing of multiple sequence alignments improves the reliability of such reconstructions amid low genetic distances between taxa.
Collapse
Affiliation(s)
- Belen Escobari
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, 14195, Germany
- Herbario Nacional de Bolivia, Universidad Mayor de San Andres, Casilla, La Paz, 10077, Bolivia
| | - Thomas Borsch
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, 14195, Germany
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195, Germany
| | - Taylor S Quedensley
- Department of Biology, Texas Christian University, Fort Worth, TX, 76109, USA
| | - Michael Gruenstaeudl
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
10
|
Mongiardino Koch N. Phylogenomic Subsampling and the Search for Phylogenetically Reliable Loci. Mol Biol Evol 2021; 38:4025-4038. [PMID: 33983409 DOI: 10.1101/2021.02.13.431075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
11
|
Abstract
Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.
Collapse
|
12
|
Park I, Song JH, Yang S, Chae S, Moon BC. Plastid Phylogenomic Data Offers Novel Insights Into the Taxonomic Status of the Trichosanthes kirilowii Complex (Cucurbitaceae) in South Korea. FRONTIERS IN PLANT SCIENCE 2021; 12:559511. [PMID: 34386020 PMCID: PMC8353159 DOI: 10.3389/fpls.2021.559511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Trichosanthes is a genus in Cucurbitaceae comprising 90-100 species. Trichosanthes species are valuable as herbaceous medicinal ingredients. The fruits, seeds, and roots of species such as T. kirilowii and T. rosthornii are used in Korean traditional herbal medicines. T. rosthornii is only found in China, whereas in South Korea two varieties, T. kirilowii var. kirilowii and T. kirilowii var. japonica, are distributed. T. kirilowii var. kirilowii and T. kirilowii var. japonica have different fruit and leaf shapes but are recognized as belonging to the same species. Furthermore, although its members have herbal medicine applications, genomic information of the genus is still limited. The broad goals of this study were (i) to evaluate the taxonomy of Trichosanthes using plastid phylogenomic data and (ii) provide molecular markers specific for T. kirilowii var. kirilowii and T. kirilowii var. japonica, as these have differences in their pharmacological effectiveness and thus should not be confused and adulterated. Comparison of five Trichosanthes plastid genomes revealed locally divergent regions, mainly within intergenic spacer regions (trnT-UGU-trnL-UAA: marker name Tri, rrn4.5-rrn5: TRr, trnE-UUC-trnT-GGU: TRtt). Using these three markers as DNA-barcodes for important herbal medicine species in Trichosanthes, the identity of Trichosanthes material in commercial medicinal products in South Korea could be successfully determined. Phylogenetic analysis of the five Trichosanthes species revealed that the species are clustered within tribe Sicyoeae. T. kirilowii var. kirilowii and T. rosthornii formed a clade with T. kirilowii var. japonica as their sister group. As T. kirilowii in its current circumscription is paraphyletic and as the two varieties can be readily distinguished morphologically (e.g., in leaf shape), T. kirilowii var. japonica should be treated (again) as an independent species, T. japonica.
Collapse
Affiliation(s)
- Inkyu Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Jun-Ho Song
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| | - Sungwook Chae
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea
| |
Collapse
|
13
|
Pérez-Escobar OA, Dodsworth S, Bogarín D, Bellot S, Balbuena JA, Schley RJ, Kikuchi IA, Morris SK, Epitawalage N, Cowan R, Maurin O, Zuntini A, Arias T, Serna-Sánchez A, Gravendeel B, Torres Jimenez MF, Nargar K, Chomicki G, Chase MW, Leitch IJ, Forest F, Baker WJ. Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. AMERICAN JOURNAL OF BOTANY 2021; 108:1166-1180. [PMID: 34250591 DOI: 10.1002/ajb2.1702] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.
Collapse
Affiliation(s)
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Diego Bogarín
- Lankester Botanic Garden, University of Costa Rica, Cartago, Costa Rica
| | | | | | | | | | | | | | - Robyn Cowan
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | | | | | | | | | | | | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Australia
- National Research Collections, Commonwealth Industrial and Scientific Research Organization, Australia
| | - Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark W Chase
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, 6102, Australia
| | | | - Félix Forest
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | |
Collapse
|
14
|
Bateman RM, Rudall PJ, Murphy ARM, Cowan RS, Devey DS, Peréz-Escobar OA. Whole plastomes are not enough: phylogenomic and morphometric exploration at multiple demographic levels of the bee orchid clade Ophrys sect. Sphegodes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:654-681. [PMID: 33449086 DOI: 10.1093/jxb/eraa467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/15/2020] [Indexed: 05/21/2023]
Abstract
Plastid sequences have long dominated phylogeny reconstruction at all time depths, predicated on a usually untested assumption that they accurately represent the evolutionary histories of phenotypically circumscribed species. We combined detailed in situ morphometrics (124 plants) and whole-plastome sequencing through genome skimming (71 plants) in order to better understand species-level diversity and speciation in arguably the most challenging monophyletic group within the taxonomically controversial, pseudo-copulatory bee orchid genus Ophrys. Using trees and ordinations, we interpreted the data at four nested demographic levels-macrospecies, mesospecies, microspecies, and local population-seeking the optimal level for bona fide species. Neither morphological nor molecular discontinuities are evident at any level below macrospecies, the observed overlap among taxa suggesting that both mesospecies and microspecies reflect arbitrary division of a continuum of variation. Plastomes represent geographic location more strongly than taxonomic assignment and correlate poorly with morphology, suggesting widespread plastid capture and possibly post-glacial expansion from multiple southern refugia. As they are rarely directly involved in the speciation process, plastomes depend on extinction of intermediate lineages to provide phylogenetic signal and so cannot adequately document evolutionary radiations. The popular 'ethological' evolutionary model recognizes as numerous 'ecological species' (microspecies) lineages perceived as actively diverging as a result of density-dependent selection on very few features that immediately dictate extreme pollinator specificity. However, it is assumed rather than demonstrated that the many microspecies are genuinely diverging. We conversely envisage a complex four-dimensional reticulate network of lineages, generated locally and transiently through a wide spectrum of mechanisms, but each unlikely to maintain an independent evolutionary trajectory long enough to genuinely speciate by escaping ongoing gene flow. The frequent but localized microevolution that characterizes the Ophrys sphegodes complex is often convergent and rarely leads to macroevolution. Choosing between the contrasting 'discontinuity' and 'ethology' models will require next-generation sequencing of nuclear genomes plus ordination of corresponding morphometric matrices, seeking the crucial distinction between retained ancestral polymorphism-consistent with lineage divergence-and polymorphisms reflecting gene flow through 'hybridization'-more consistent with lineage convergence.
Collapse
|
15
|
Xu S, Yao S, Huang R, Tan Y, Huang D. Transcriptome-wide analysis of the AP2/ERF transcription factor gene family involved in the regulation of gypenoside biosynthesis in Gynostemma pentaphyllum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:238-247. [PMID: 32563852 DOI: 10.1016/j.plaphy.2020.05.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 05/02/2023]
Abstract
Gynostemma pentaphyllum is a traditional Chinese medicinal herb, serving as natural source of gypenosides (triterpene saponins). The APETALA2/ethylene response factor (AP2/ERF) transcription factors, playing essential regulation roles in plant biotic and abiotic stress responses and secondary metabolism biosynthesis. However, the regulation roles of AP2/ERF transcription factors in gypenosides biosynthesis in G. pentaphyllum remains little understood. In the present study, 125 AP2/ERF genes were identified from G. pentaphyllum transcriptome datasets. Phylogenetic, conserved motifs and expression pattern were employed to comprehensively analyze the 125 GpAP2/ERF genes. Based on the sequence similarity and phylogeny tree, the 125 GpAP2/ERF genes can be classified into 10 groups. Moreover, the distribution of conserved motifs among GpAP2/ERF proteins in phylogenetic trees was consistent with previous studies, thus supporting the classification. Expression profiling indicated that the 125 GpAP2/ERF genes exhibited distinct tissue-specific expression patterns. As confirmed by qRT-PCR, the four candidate GpAP2/ERF genes and gypenoside biosynthetic genes were highly expressed in leaves and/or flowers, and show similar expression patterns in response to MeJA. Base on the expression patterns and phylogenetic relationships, two GpAP2/ERF genes were considered as potential regulatory genes for gypenoside biosynthesis. Our study enhances understanding roles of GpAP2/ERF genes in regulation of gypenosides biosynthesis.
Collapse
Affiliation(s)
- Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
16
|
Barrera-Redondo J, Lira-Saade R, Eguiarte LE. Gourds and Tendrils of Cucurbitaceae: How Their Shape Diversity, Molecular and Morphological Novelties Evolved via Whole-Genome Duplications. MOLECULAR PLANT 2020; 13:1108-1110. [PMID: 32622159 DOI: 10.1016/j.molp.2020.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad de México 04510, Mexico
| | - Rafael Lira-Saade
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenido de los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad de México 04510, Mexico.
| |
Collapse
|