1
|
Abdalla AM, Miao Y, Ming N, Ouyang C. ADAM10 modulates the efficacy of T-cell-mediated therapy in solid tumors. Immunol Cell Biol 2024; 102:907-923. [PMID: 39417304 DOI: 10.1111/imcb.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
T-cell-mediated therapeutic strategies are the most potent effectors of cancer immunotherapy. However, an essential barrier to this therapy in solid tumors is disrupting the anti-cancer immune response, cancer-immunity cycle, T-cell priming, trafficking and T-cell cytotoxic capacity. Thus, reinforcing the anti-cancer immune response is needed to improve the effectiveness of T-cell-mediated therapy. Tumor-associated protease ADAM10, endothelial cells (ECs) and cytotoxic CD8+ T cells engage in complex communication via adhesion, transmigration and chemotactic mechanisms to facilitate an anti-cancer immune response. The precise impact of ADAM10 on the intricate mechanisms underlying these interactions remains unclear. This paper broadly explores how ADAM10, through different routes, influences the efficacy of T-cell-mediated therapy. ADAM10 cleaves CD8+ T-cell-targeting genes and impacts their expression and specificity. In addition, ADAM10 mediates the interactions of adhesion molecules with T cells and influences CD8+ T-cell activity and trafficking. Thus, understanding the role of ADAM10 in these events may lead to innovative strategies for advancing T-cell-mediated therapies.
Collapse
Affiliation(s)
- Ahmed Me Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Department of Phase 1 Clinical and Research Ward, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ning Ming
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Allard CC, Salti S, Mourad W, Hassan GS. Implications of CD154 and Its Receptors in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Cells 2024; 13:1621. [PMID: 39404385 PMCID: PMC11482534 DOI: 10.3390/cells13191621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
CD154, also known as CD40 ligand, is a costimulatory molecule involved in humoral and adaptive immune responses upon pairing with its classical receptor, CD40. The CD154/CD40 dyad is a key participant in the pathogenesis of many autoimmune diseases, including systemic lupus erythematosus (SLE). In SLE, the major cells at play, T and B lymphocytes, are shown to overexpress CD154 and CD40, respectively. Subsequently, these cells and other CD40-positive cells engage in numerous effector functions contributing to SLE development. With the recent identification of additional receptors for CD154, all belonging to the integrin family, the role of CD154 in SLE is more complex and calls for deeper investigation into its biological significance. Many therapeutic strategies directed against the CD154/CD40 couple have been deployed for the treatment of SLE and proved efficient in animal models and human studies. However, the incidence of thromboembolic complications in patients treated with these anti-CD154/CD40 antibodies halted their further clinical assessments and called for another class of therapies targeting these molecules. Second-generation antibodies directed against CD154 or CD40 are showing promising results in the advanced stages of clinical testing. Our review presents a thorough description of CD154 and its receptors, CD40 and the integrin family members in SLE pathogenesis. All these elements of the CD154 system represent important therapeutic targets for the treatment of SLE.
Collapse
Affiliation(s)
| | | | - Walid Mourad
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Rue Saint-Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; (C.C.A.); (S.S.)
| | - Ghada S. Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Rue Saint-Denis, Tour Viger, Montréal, QC H2X 0A9, Canada; (C.C.A.); (S.S.)
| |
Collapse
|
3
|
Janes ME, Park KS, Gottlieb AP, Curreri A, Adebowale K, Kim J, Mitragotri S. Dendritic Cell Immune Modulation via Polyphenol Membrane Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28070-28079. [PMID: 38779939 DOI: 10.1021/acsami.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cellular hitchhiking is an emerging strategy for the in vivo control of adoptively transferred immune cells. Hitchhiking approaches are primarily mediated by adhesion of nano and microparticles to the cell membrane, which conveys an ability to modulate transferred cells via local drug delivery. Although T cell therapies employing this strategy have progressed into the clinic, phagocytic cells including dendritic cells (DCs) are much more challenging to engineer. DC vaccines hold great potential for a spectrum of diseases, and the combination drug delivery is an attractive strategy to manipulate their function and overcome in vivo plasticity. However, DCs are not compatible with current hitchhiking approaches due to their broad phagocytic capacity. In this work, we developed and validated META (membrane engineering using tannic acid) to enable DC cellular hitchhiking for the first time. META employs the polyphenol tannic acid (TA) to facilitate supramolecular assembly of protein drug cargoes on the cell membrane, enabling the creation of cell surface-bound formulations for local drug delivery to carrier DCs. We optimized META formulations to incorporate and release protein cargoes with varying physical properties alone and in combination and to preserve DC viability and critical functions such as migration. We further show that META loaded with either a pro- or anti-inflammatory cargo can influence the carrier cell phenotype, thus demonstrating the flexibility of the approach for applications from cancer to autoimmune disease. Overall, this approach illustrates a new platform for the local control of phagocytic immune cells as a next step to advance DC therapies in the clinic.
Collapse
Affiliation(s)
- Morgan E Janes
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, United States
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Kyung Soo Park
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Alexander P Gottlieb
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Alexander Curreri
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Kolade Adebowale
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Jayoung Kim
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Samir Mitragotri
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| |
Collapse
|
4
|
Bandyopadhyay S, Gurjar D, Saha B, Bodhale N. Decoding the contextual duality of CD40 functions. Hum Immunol 2023; 84:590-599. [PMID: 37596136 DOI: 10.1016/j.humimm.2023.08.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Previously, we established that as a function of its mode of interaction with its ligand or cellular conditions such as membrane lipids, preexisting signaling intermediates activation status, a transmembrane receptor, as represented here with CD40, can induce counteractive cellular responses. Using CD40-binding peptides, recombinant mutated CD40-ligands, and an agonistic antibody, we have established the functional duality of CD40. CD40 builds up two constitutionally different signalosomes on lipid raft and non-raft membrane domains initiating two different signaling pathways. Although this initial signaling may be modified by the pre-existing signaling conditions downstream and may be subjected to feed-forward or negative signaling effects, the initial CD40-CD40L interaction plays a crucial role in the functional outcome of CD40. Herein, we have reviewed the influence of interaction between the CD40-CD40L evoking the functional duality of CD40 contingent upon different physiological states of the cells.
Collapse
Affiliation(s)
| | - Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| |
Collapse
|
5
|
Feng H, Zhao Y, Li Y, Qi X, Shen S, Zhou S. Multi-Armed Anti-CD40-Mediated Dual Drug Delivery System Based on Mesoporous Silica/Au Nanorod Nanocomposites for Multimodality Imaging and Combination Therapy. ACS APPLIED NANO MATERIALS 2023; 6:13001-13012. [DOI: 10.1021/acsanm.3c01722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Affiliation(s)
- Honghong Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yangjing Zhao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yeping Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Song Shen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
6
|
Anderson J, Jalali S, Licciardi PV, Pellicci DG. OMIP-91: A 27-color flow cytometry panel to evaluate the phenotype and function of human conventional and unconventional T-cells. Cytometry A 2023. [PMID: 37183268 DOI: 10.1002/cyto.a.24738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/13/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
This 27-color panel was developed to simultaneously measure different T-cell populations (CD4, CD8, γδ T-cells, and MAIT cells) and their subsets (Memory, Th1, Th2, Th17, Tfh, and Treg) along with functional markers associated with their activation status, cytokine production and cytotoxicity. This panel will be useful for both in vivo and in vitro studies evaluating T-cells in the context of human health and disease. This panel is valuable in settings where samples are limited as a large amount of data will be generated using small volumes of blood.
Collapse
Affiliation(s)
- Jeremy Anderson
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sedi Jalali
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Cellular Immunology, Murdoch Children's Research Institute, Melbourne, Australia
| | - Paul V Licciardi
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Daniel G Pellicci
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia
- Cellular Immunology, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Morphological-anatomical and chemical features of Copernicia alba fruits and seeds, a palm from Brazilian Pantanal. PLoS One 2023; 18:e0282775. [PMID: 36897866 PMCID: PMC10004538 DOI: 10.1371/journal.pone.0282775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Copernicia alba (Arecaceae) is a palm tree regionally known as carandá that forms large populations and produces abundant fruits, an important food source for the local fauna in Brazilian wetlands. The fruits present morphological variations regarding color, shape and dimensions. In this study fruits of different shapes were collected and processed following routine techniques in plant morphology, and biochemistry analysis of endosperm. (hemicellulose) The fruits isdark, of the berry type, with partially fibrous pericarp, rich in phenolic compounds; the ruminated seed coat also contains phenols; the endosperm, formed of cells with highly thickened, not lignified hemicellulosic walls, stores xyloses, proteins and lipids. The embryo is short and straight. Xylose is the leading sugar of xylan, which can be liberated by hydrolysis with specific enzymes, such as xylanases. This sugar is of interest in several industrial sectors, such as the production of biofuels and xylitol for foods. Excepting depth of seed rumination, C. alba fruits do not have relevant differences in anatomy and classes of substances detected. The fruit yield showed differences associated with its shape, indicating the best utilization. Considering fruit anatomical features and tissue composition, we highlight that the seeds of C. alba have the potential as a new functional food source.
Collapse
|
8
|
Matas-Céspedes A, Lapointe JM, Elder MJ, Browne GJ, Dovedi SJ, de Haan L, Maguire S, Stebbings R. Characterization of a novel potency endpoint for the evaluation of immune checkpoint blockade in humanized mice. Front Immunol 2023; 14:1107848. [PMID: 36936963 PMCID: PMC10020612 DOI: 10.3389/fimmu.2023.1107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Humanized mice are emerging as valuable models to experimentally evaluate the impact of different immunotherapeutics on the human immune system. These immunodeficient mice are engrafted with human cells or tissues, that then mimic the human immune system, offering an alternative and potentially more predictive preclinical model. Immunodeficient NSG mice engrafted with human CD34+ cord blood stem cells develop human T cells educated against murine MHC. However, autoimmune graft versus host disease (GvHD), mediated by T cells, typically develops 1 year post engraftment. Methods Here, we have used the development of GvHD in NSG mice, using donors with HLA alleles predisposed to autoimmunity (psoriasis) to weight in favor of GvHD, as an endpoint to evaluate the relative potency of monoclonal and BiSpecific antibodies targeting PD-1 and CTLA-4 to break immune tolerance. Results We found that treatment with either a combination of anti-PD-1 & anti-CTLA-4 mAbs or a quadrivalent anti-PD-1/CTLA-4 BiSpecific (MEDI8500), had enhanced potency compared to treatment with anti-PD-1 or anti-CTLA-4 monotherapies, increasing T cell activity both in vitro and in vivo. This resulted in accelerated development of GvHD and shorter survival of the humanized mice in these treatment groups commensurate with their on target activity. Discussion Our findings demonstrate the potential of humanized mouse models for preclinical evaluation of different immunotherapies and combinations, using acceleration of GvHD development as a surrogate of aggravated antigenic T-cell response against host.
Collapse
Affiliation(s)
- Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
- *Correspondence: Alba Matas-Céspedes, ; Richard Stebbings,
| | - Jean-Martin Lapointe
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
| | | | - Gareth J. Browne
- Antibody Discovery and Protein Engineering, R&D , AstraZeneca, Cambridge,
United Kingdom
| | | | - Lolke de Haan
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
| | - Shaun Maguire
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge,
United Kingdom
- *Correspondence: Alba Matas-Céspedes, ; Richard Stebbings,
| |
Collapse
|
9
|
Ibraheem K, Yhmed AMA, Nasef MM, Georgopoulos NT. TRAF3/p38-JNK Signalling Crosstalk with Intracellular-TRAIL/Caspase-10-Induced Apoptosis Accelerates ROS-Driven Cancer Cell-Specific Death by CD40. Cells 2022; 11:cells11203274. [PMID: 36291141 PMCID: PMC9600997 DOI: 10.3390/cells11203274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
The capacity to induce tumour-cell specific apoptosis represents the most unique feature of the TNF receptor (TNFR) family member CD40. Recent studies on the signalling events triggered by its membrane-presented ligand CD40L (mCD40L) in normal and malignant epithelial cells have started to unravel an exquisite context and cell type specificity for the functional effects of CD40. Here, we demonstrate that, in comparison to other carcinomas, mCD40L triggered strikingly more rapid apoptosis in colorectal carcinoma (CRC) cells, underpinned by its ability to entrain two concurrently operating signalling axes. CD40 ligation initially activates TNFR-associated factor 3 (TRAF3) and subsequently NADPH oxidase (NOX)/Apoptosis signal-regulating kinase 1 (ASK1)-signalling and induction of reactive oxygen species (ROS) to mediate p38/JNK- and ROS-dependent cell death. At that point, p38/JNK signalling directly activates the mitochondrial pathway, and triggers rapid induction of intracellular TNF-related apoptosis-inducing ligand (TRAIL) that signals from internal compartments to initiate extrinsic caspase-10-asscociated apoptosis, leading to truncated Bid (tBid)-activated mitochondrial signalling. p38 and JNK are essential both for direct mitochondrial apoptosis induction and the TRAIL/caspase-10/tBid pathway, but their involvement follows functional hierarchy and temporally controlled interplay, as p38 function is required for JNK phosphorylation. By engaging both intrinsic and extrinsic pathways to activate apoptosis via two signals simultaneously, CD40 can accelerate CRC cell death. Our findings further unravel the multi-faceted properties of the CD40/mCD40L dyad, highlighted by the novel TNFR crosstalk that accelerates tumour cell-specific death, and may have implications for the use of CD40 as a therapeutic target.
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Albashir M. A. Yhmed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Department of Medical Laboratory Sciences, Faculty of Medical Technology, Wadi Alshatti University, Wadi Alshatti P.O. Box 68, Libya
| | - Mohamed M. Nasef
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Correspondence: ; Tel.: +44-(0)1484-25-6860
| |
Collapse
|
10
|
Rosichini M, Catanoso M, Screpanti I, Felli MP, Locatelli F, Velardi E. Signaling Crosstalks Drive Generation and Regeneration of the Thymus. Front Immunol 2022; 13:920306. [PMID: 35734178 PMCID: PMC9207182 DOI: 10.3389/fimmu.2022.920306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022] Open
Abstract
Optimal recovery of immune competence after periods of hematopoietic insults or stress is crucial to re-establish patient response to vaccines, pathogens and tumor antigens. This is particularly relevant for patients receiving high doses of chemotherapy or radiotherapy, who experience prolonged periods of lymphopenia, which can be associated with an increased risk of infections, malignant relapse, and adverse clinical outcome. While the thymus represents the primary organ responsible for the generation of a diverse pool of T cells, its function is profoundly impaired by a range of acute insults (including those caused by cytoreductive chemo/radiation therapy, infections and graft-versus-host disease) and by the chronic physiological deterioration associated with aging. Impaired thymic function increases the risk of infections and tumor antigen escape due to a restriction in T-cell receptor diversity and suboptimal immune response. Therapeutic approaches that can promote the renewal of the thymus have the potential to restore immune competence in patients. Previous work has documented the importance of the crosstalk between thymocytes and thymic epithelial cells in establishing correct architecture and function of thymic epithelium. This crosstalk is relevant not only during thymus organogenesis, but also to promote the recovery of its function after injuries. In this review, we will analyze the signals involved in the crosstalk between TECs and hematopoietic cells. We will focus in particular on how signals from T-cells can regulate TEC function and discuss the relevance of these pathways in restoring thymic function and T-cell immunity in experimental models, as well as in the clinical setting.
Collapse
Affiliation(s)
- Marco Rosichini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marialuigia Catanoso
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Enrico Velardi,
| |
Collapse
|
11
|
Novel Functions of Integrins as Receptors of CD154: Their Role in Inflammation and Apoptosis. Cells 2022; 11:cells11111747. [PMID: 35681441 PMCID: PMC9179867 DOI: 10.3390/cells11111747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022] Open
Abstract
CD154, an inflammatory mediator also known as CD40 ligand, has been identified as a novel binding partner for some members of the integrin family. The αIIbβ3, specifically expressed on platelets, was the first integrin to be described as a receptor for CD154 after CD40. Its interaction with soluble CD154 (sCD154) highly contributes to thrombus formation and stability. Identifying αIIbβ3 opened the door for investigating other integrins as partners of CD154. The αMβ2 expressed on myeloid cells was shown capable of binding CD154 and contributing as such to cell activation, adhesion, and release of proinflammatory mediators. In parallel, α5β1 communicates with sCD154, inducing pro-inflammatory responses. Additional pathogenic effects involving apoptosis-preventing functions were exhibited by the CD154–α5β1 dyad in T cells, conferring a role for such interaction in the survival of malignant cells, as well as the persistence of autoreactive T cells. More recently, CD154 receptors integrated two new integrin members, αvβ3 and α4β1, with little known as to their biological significance in this context. This article provides an overview of the novel role of integrins as receptors of CD154 and as critical players in pro-inflammatory and apoptotic responses.
Collapse
|
12
|
CD40-CD40L in Neurological Disease. Int J Mol Sci 2022; 23:ijms23084115. [PMID: 35456932 PMCID: PMC9031401 DOI: 10.3390/ijms23084115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Immune-inflammatory conditions in the central nervous system (CNS) rely on molecular and cellular interactions which are homeostatically maintained to protect neural tissue from harm. The CD40–CD40L interaction upregulates key proinflammatory molecules, a function best understood in the context of infection, during which B-cells are activated via CD40 signaling to produce antibodies. However, the role of CD40 in neurological disease of non-infectious etiology is unclear. We review the role of CD40–CD40L in traumatic brain injury, Alzheimer’s Disease, Parkinson’s Disease, stroke, epilepsy, nerve injury, multiple sclerosis, ALS, myasthenia gravis and brain tumors. We also highlight therapeutic advancements targeting the CD40 system to either attenuate the neuroinflammatory response or leverage the downstream effects of CD40 signaling for direct tumor cell lysis.
Collapse
|
13
|
The role of A Disintegrin and Metalloproteinase (ADAM)-10 in T helper cell biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119192. [PMID: 34982961 DOI: 10.1016/j.bbamcr.2021.119192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
A Disintegrin and Metalloproteinases (ADAM)-10 is a member of a family of membrane-anchored proteinases that regulate a broad range of cellular functions with central roles within the immune system. This has spurred the interest to modulate ADAM activity therapeutically in immunological diseases. CD4 T helper (Th) cells are the key regulators of adaptive immune responses. Their development and function is strongly dependent on Notch, a key ADAM-10 substrate. However, Th cells rely on a variety of additional ADAM-10 substrates regulating their functional activity at multiple levels. The complexity of both, the ADAM substrate expression as well as the functional consequences of ADAM-mediated cleavage of the various substrates complicates the analysis of cell type specific effects. Here we provide an overview on the major ADAM-10 substrates relevant for CD4 T cell biology and discuss the potential effects of ADAM-mediated cleavage exemplified for a selection of important substrates.
Collapse
|
14
|
Hu XX, Zhang AJ, Pan WW, Xin QL, Chen JY, Zhang LL, Chang Y, Wu YJ, Wei W. An IgD-Fc-Ig fusion protein restrains the activation of T and B cells by inhibiting IgD-IgDR-Lck signaling in rheumatoid arthritis. Acta Pharmacol Sin 2022; 43:387-400. [PMID: 33864023 PMCID: PMC8791948 DOI: 10.1038/s41401-021-00665-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/19/2021] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovitis and the destruction of small joints. Emerging evidence shows that immunoglobulin D (IgD) stimulation induces T-cell activation, which may contribute to diseases pathogenesis in RA. In this study, we investigated the downstream signaling pathways by which IgD activated T cells as well as the possible role of IgD in the T-B interaction. Peripheral blood mononuclear cells were isolated from peripheral blood of healthy controls and RA patients. We demonstrated that IgD activated T cells through IgD receptor (IgDR)-lymphocyte-specific protein tyrosine kinase (Lck)-zeta-associated protein 70 (ZAP70)/phosphatidylinositol 3-kinase (PI3K)/nuclear factor kappa-B (NF-κB) signaling pathways; IgD-induced CD4+ T cells promoted the proliferation of CD19+ B cells in RA patients. A novel fusion protein IgD-Fc-Ig (composed of human IgD-Fc domain and IgG1 Fc domain, which specifically blocked the IgD-IgDR binding) inhibited the coexpression of IgDR and phosphorylated Lck (p-Lck) and the expression levels of p-Lck, p-ZAP70, p-PI3K on CD4+ T cells, and decreased NF-κB nuclear translocation in Jurkat cells. Meanwhile, IgD-Fc-Ig downregulated the expression levels of CD40L on CD4+ T cells as well as CD40, CD86 on CD19+ B cells in RA patients and healthy controls. It also decreased the expression levels of CD40L on CD4+ T cells and CD40 on CD19+ B cells from spleens of collagen-induced arthritis (CIA) mice and reduced IL-17A level in mouse serum. Moreover, administration of IgD-Fc-Ig (1.625-13 mg/kg, iv, twice a week for 4 weeks) in CIA mice dose-dependently decreased the protein expression levels of CD40, CD40L, and IgD in spleens. IgD-Fc-Ig restrains T-cell activation through inhibiting IgD-IgDR-Lck-ZAP70-PI3K-NF-κB signaling, thus inhibiting B-cell activation. Our data provide experimental evidences for application of IgD-Fc-Ig as a highly selective T cell-targeting treatment for RA.
Collapse
Affiliation(s)
- Xiao-xi Hu
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Ai-jun Zhang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Wen-wen Pan
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Qian-ling Xin
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Jing-yu Chen
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Ling-ling Zhang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Yan Chang
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Yu-jing Wu
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| | - Wei Wei
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032 China
| |
Collapse
|
15
|
Wang R, Chen J, Wang W, Zhao Z, Wang H, Liu S, Li F, Wan Y, Yin J, Wang R, Li Y, Zhang C, Zhang H, Cao Y. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model. J Immunother Cancer 2022; 10:jitc-2021-003809. [PMID: 35086948 PMCID: PMC8796271 DOI: 10.1136/jitc-2021-003809] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers worldwide. Despite the promising outcome of immune checkpoint inhibitors and agonist antibody therapies in different malignancies, PDAC exhibits high resistance due to its immunosuppressive tumor microenvironment (TME). Ameliorating the TME is thus a rational strategy for PDAC therapy. The intratumoral application of oncolytic herpes simplex virus-1 (oHSV) upregulates pro-inflammatory macrophages and lymphocytes in TME, and enhances the responsiveness of PDAC to immunotherapy. However, the antitumor activity of oHSV remains to be maximized. The aim of this study is to investigate the effect of the CD40L armed oHSV on the tumor immune microenvironment, and ultimately prolong the survival of the PDAC mouse model. Methods The membrane-bound form of murine CD40L was engineered into oHSV by CRISPR/Cas9-based gene editing. oHSV-CD40L induced cytopathic effect and immunogenic cell death were determined by microscopy and flow cytometry. The expression and function of oHSV-CD40L was assessed by reporter cell assay. The oHSV-CD40L was administrated intratumorally to the immune competent syngeneic PDAC mouse model, and the leukocytes in TME and tumor-draining lymph node were analyzed by multicolor flow cytometry. Intratumoral cytokines were determined by ELISA. Results Intratumoral application of oHSV-CD40L efficiently restrained the tumor growth and prolonged the survival of the PDAC mouse model. In TME, oHSV-CD40L-treated tumor accommodated more maturated dendritic cells (DCs), which in turn activated T helper 1 and cytotoxic CD8+ T cells in an interferon-γ-dependent and interleukin-12-dependent manner. In contrast, the regulatory T cells were significantly reduced in TME by oHSV-CD40L treatment. Repeated dosing and combinational therapy extended the lifespan of PDAC mice. Conclusion CD40L-armed oncolytic therapy endues TME with increased DCs maturation and DC-dependent activation of cytotoxic T cells, and significantly prolongs the survival of the model mice. This study may lead to the understanding and development of oHSV-CD40L as a therapy for PDAC in synergy with immune checkpoint blockade.
Collapse
Affiliation(s)
- Ruikun Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingru Chen
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhuoqian Zhao
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Haoran Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shiyu Liu
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Li
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Yajuan Wan
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Yin
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Rui Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Cuizhu Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Hongkai Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China.,CNBG-NKU Joint R&D Center, Beijing Institute of Biological Products Co., Ltd., China National Biotec Group, Beijing, China
| | - Youjia Cao
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| |
Collapse
|
16
|
Mortezaee K, Majidpoor J. (Im)maturity in Tumor Ecosystem. Front Oncol 2022; 11:813897. [PMID: 35145911 PMCID: PMC8821092 DOI: 10.3389/fonc.2021.813897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumors have special features that make them distinct from their normal counterparts. Immature cells in a tumor mass and their critical contributions to the tumorigenesis will open new windows toward cancer therapy. Incomplete cellular development brings versatile and unique functionality in the cellular tumor ecosystem, such as what is seen for highly potential embryonic cells. There is evidence that maturation of certain types of cells in this ecosystem can recover the sensitivity of the tumor. Therefore, understanding more about the mechanisms that contributed to this immaturity will render new therapeutic approaches in cancer therapy. Targeting such mechanisms can be exploited as a supplementary to the current immunotherapeutic treatment schedules, such as immune checkpoint inhibitor (ICI) therapy. The key focus of this review is to discuss the impact of (im)maturity in cellular tumor ecosystems on cancer progression, focusing mainly on immaturity in the immune cell compartment of the tumor, as well as on the stemness of tumor cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
17
|
Lu J, Sun K, Yang H, Fan D, Huang H, Hong Y, Wu S, Zhou H, Fang F, Li Y, Meng L, Huang J, Bai Z. Sepsis Inflammation Impairs the Generation of Functional Dendritic Cells by Targeting Their Progenitors. Front Immunol 2021; 12:732612. [PMID: 34566996 PMCID: PMC8458800 DOI: 10.3389/fimmu.2021.732612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background Sepsis is a complex systemic immune dysfunction syndrome induced by infection. Sepsis has a high mortality rate, with most patients dying due to systemic organ failure or secondary infection. Dendritic cells (DCs) are professional antigen-presenting cells. Upon infection with microbes, DCs are activated to induce adaptive immune responses for controlling infection. DC generation and function are impaired during sepsis; however, the underlying mechanisms remain largely unknown. Methods Peripheral blood samples from sepsis patients were collected to examine DC subsets, DC progenitors, and apoptosis of DCs by flow cytometer. In vitro induction of DCs from hematopoietic stem/progenitor cells were established and a variety of sepsis-associated inflammatory mediators [e.g., interferon-gamma (IFN-γ), interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and granulocyte-colony stimulating factor (G-CSF)] and Lipopolysaccharide (LPS) were determined for the impact on DC generation and function in vitro. Results Our results demonstrate that sepsis-induced systemic inflammation impairs the capacity of hematopoietic stem and progenitor cells (HSPCs) to produce DCs, including conventional DCs (cDCs) and plasmacytoid DCs (pDCs). We investigated peripheral blood (PB) samples from 34 pediatric patients on days 1 to 7 following diagnosis. Compared to healthy donors (n = 18), the sepsis patients exhibited a significantly fewer percentage and number of pDCs and cDCs, and a lower expression of antigen presenting molecule HLD-DR and co-stimulatory molecules (e.g., CD86) on the surface of DCs. This sepsis-induced DC impairment was associated with significantly increased apoptotic death of DCs and marked decreases of progenitor cells that give rise to DCs. Furthermore, we observed that among the tested sepsis-associated cytokines (e.g., IFN-γ, IL-1β, TNF-α, and G-CSF), G-CSF and IFN-γ impaired DC development from cultured HSPCs. G-CSF also markedly decreased the expression of HLA-DR on HSPC-derived DCs and their cytokine production, including IL-12 and IFN-β. Conclusions Collectively, these findings indicate that sepsis impairs the survival of functional DCs and their development from HSPCs. Strategies for improving DC reconstitution following sepsis may restore DC progenitors and their associated function.
Collapse
Affiliation(s)
- Jie Lu
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - Kun Sun
- Department of Emergency, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Huiping Yang
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - Dan Fan
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - He Huang
- Department of Emergency, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Yi Hong
- Department of Pediatrics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuiyan Wu
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - HuiTing Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - YanHong Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Nephrology, Children's Hospital of Soochow University, Suzhou, China
| | - Lijun Meng
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Department of Cardiovascular Medicine, Children Hospital of Soochow University, Suzhou, China
| | - Zhenjiang Bai
- Department of Pediatric Intensive Care Unit, Children Hospital of Soochow University, Suzhou, China
| |
Collapse
|