1
|
Dubrovskii VG. Composition of Vapor-Liquid-Solid III-V Ternary Nanowires Based on Group-III Intermix. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2532. [PMID: 37764561 PMCID: PMC10536332 DOI: 10.3390/nano13182532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Compositional control in III-V ternary nanowires grown by the vapor-liquid-solid method is essential for bandgap engineering and the design of functional nanowire nano-heterostructures. Herein, we present rather general theoretical considerations and derive explicit forms of the stationary vapor-solid and liquid-solid distributions of vapor-liquid-solid III-V ternary nanowires based on group-III intermix. It is shown that the vapor-solid distribution of such nanowires is kinetically controlled, while the liquid-solid distribution is in equilibrium or nucleation-limited. For a more technologically important vapor-solid distribution connecting nanowire composition with vapor composition, the kinetic suppression of miscibility gaps at a growth temperature is possible, while miscibility gaps (and generally strong non-linearity of the compositional curves) always remain in the equilibrium liquid-solid distribution. We analyze the available experimental data on the compositions of the vapor-liquid-solid AlxGa1-xAs, InxGa1-xAs, InxGa1-xP, and InxGa1-xN nanowires, which are very well described within the model. Overall, the developed approach circumvents uncertainty in choosing the relevant compositional model (close-to-equilibrium or kinetic), eliminates unknown parameters in the vapor-solid distribution of vapor-liquid-solid nanowires based on group-III intermix, and should be useful for the precise compositional tuning of such nanowires.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Gandolfi M, Carletti L, Tognazzi A, Cino AC, De Angelis C, Guasoni M. Near to short wave infrared light generation through AlGaAs-on-insulator nanoantennas. OPTICS EXPRESS 2023; 31:31051-31060. [PMID: 37710633 DOI: 10.1364/oe.498592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023]
Abstract
AlGaAs-on-insulator (AlGaAs-OI) has recently emerged as a promising platform for nonlinear optics at the nanoscale. Among the most remarkable outcomes, second-harmonic generation (SHG) in the visible/near infrared spectral region has been demonstrated in AlGaAs-OI nanoantennas (NAs). In order to extend the nonlinear frequency generation towards the short wave infrared window, in this work we propose and demonstrate via numerical simulations difference frequency generation (DFG) in AlGaAs-OI NAs. The NA geometry is finely adjusted in order to obtain simultaneous optical resonances at the pump, signal and idler wavelengths, which results in an efficient DFG with conversion efficiencies up to 0.01%. Our investigation includes the study of the robustness against random variations of the NA geometry that may occur at fabrication stage. Overall, these outcomes identify what we believe to be a new potential and yet unexplored application of AlGaAs-OI NAs as compact devices for the generation and control of the radiation pattern in the near to short infrared spectral region.
Collapse
|
3
|
Barettin D. State of the Art of Continuous and Atomistic Modeling of Electromechanical Properties of Semiconductor Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1820. [PMID: 37368250 DOI: 10.3390/nano13121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The main intent of this paper is to present an exhaustive description of the most relevant mathematical models for the electromechanical properties of heterostructure quantum dots. Models are applied both to wurtzite and zincblende quantum dot due to the relevance they have shown for optoelectronic applications. In addition to a complete overview of the continuous and atomistic models for the electromechanical fields, analytical results will be presented for some relevant approximations, some of which are unpublished, such as models in cylindrical approximation or a cubic approximation for the transformation of a zincblende parametrization to a wurtzite one and vice versa. All analytical models will be supported by a wide range of numerical results, most of which are also compared with experimental measurements.
Collapse
Affiliation(s)
- Daniele Barettin
- Daniele Barettin of Electronic Engineering, Università Niccoló Cusano, 00133 Rome, Italy
| |
Collapse
|
4
|
Barettin D, Shtrom IV, Reznik RR, Cirlin GE. Model of a GaAs Quantum Dot in a Direct Band Gap AlGaAs Wurtzite Nanowire. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1737. [PMID: 37299640 PMCID: PMC10254198 DOI: 10.3390/nano13111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
We present a study with a numerical model based on k→·p→, including electromechanical fields, to evaluate the electromechanical and optoelectronic properties of single GaAs quantum dots embedded in direct band gap AlGaAs nanowires. The geometry and the dimensions of the quantum dots, in particular the thickness, are obtained from experimental data measured by our group. We also present a comparison between the experimental and numerically calculated spectra to support the validity of our model.
Collapse
Affiliation(s)
- Daniele Barettin
- Department of Electronic Engineering, Università Niccoló Cusano, 00133 Rome, Italy
| | - Igor V. Shtrom
- Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
| | - Rodion R. Reznik
- Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
- Department of Physics, ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Department of Physics, Alferov University, Khlopina 8/3, 194021 St. Petersburg, Russia
| | - George E. Cirlin
- Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
- Department of Physics, ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Department of Physics, Alferov University, Khlopina 8/3, 194021 St. Petersburg, Russia
- Institute for Analytical Instrumentation RAS, Rizhsky 26, 190103 St. Petersburg, Russia
| |
Collapse
|
5
|
Barettin D, Shtrom IV, Reznik RR, Mikushev SV, Cirlin GE, Auf der Maur M, Akopian N. Direct Band Gap AlGaAs Wurtzite Nanowires. NANO LETTERS 2023; 23:895-901. [PMID: 36649590 DOI: 10.1021/acs.nanolett.2c04184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wurtzite AlGaAs is a technologically promising yet unexplored material. Here we study it both experimentally and numerically. We develop a complete numerical model based on an 8-band k→·p→ method, including electromechanical fields, and calculate the optoelectronic properties of wurtzite AlGaAs nanowires with different Al content. We then compare them with our experimental data. Our results strongly suggest that wurtzite AlGaAs is a direct band gap material. Moreover, we have also numerically obtained the band gap of wurtzite AlAs and the valence band offset between AlAs and GaAs in the wurtzite symmetry.
Collapse
Affiliation(s)
- Daniele Barettin
- Department of Electronic Engineering, Università degli Studi Niccolò Cusano - Telematica, via don Carlo Gnocchi 3, Rome00166, Italy
| | - Igor V Shtrom
- St. Petersburg State University, Saint Petersburg199034, Russian Federation
- Alferov University, Saint Petersburg194021, Russian Federation
- Institute for Analytical Instrumentation, Russian Academy of Sciences, Saint Petersburg190103, Russian Federation
| | - Rodion R Reznik
- St. Petersburg State University, Saint Petersburg199034, Russian Federation
| | - Sergey V Mikushev
- St. Petersburg State University, Saint Petersburg199034, Russian Federation
| | - George E Cirlin
- St. Petersburg State University, Saint Petersburg199034, Russian Federation
- Alferov University, Saint Petersburg194021, Russian Federation
- Institute for Analytical Instrumentation, Russian Academy of Sciences, Saint Petersburg190103, Russian Federation
| | - Matthias Auf der Maur
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome00133, Italy
| | - Nika Akopian
- DTU Department of Electrical and Photonics Engineering, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| |
Collapse
|
6
|
Purcell Effect and Beaming of Emission in Hybrid AlGaAs Nanowires with GaAs Quantum Dots. NANOMATERIALS 2021; 11:nano11112894. [PMID: 34835659 PMCID: PMC8617613 DOI: 10.3390/nano11112894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Control of directionality of emissions is an important task for the realization of novel nanophotonic devices based on nanowires. Most of the existing approaches providing high directionality of the light emitted from nanowires are based on the utilization of the tapered shape of nanowires, serving as nanoantenna coupling with the light waveguided in nanowire and the directional output beam. Here we report the beaming of the emitted light with wavelength near 800 nm by naturally formed core-shell AlGaAs NW with multiply GaAs quantum dots (QDs) diameter 30 nm and height 10 nm, while the diameter of NW 130 nm, what does not support efficient emission into waveguided modes, including the mode HE11. Experimental measurements show that intensity of emission for directions in the vicinity of the axis of NW is about two orders of magnitude higher than for perpendicular directions. The developed theoretical approach allowed us to calculate the probability of spontaneous emission for various directions and into waveguided modes and showed that highly directional radiation can be provided by the intrinsic emission properties of cylindrical NW. Our results suggest that for the small diameter of NW, directional emissions are associated with an TM0 leaky mode (when electric field oriented in axial direction) and therefore manifests in an existence of axial electric dipole transitions in quantum dots.
Collapse
|
7
|
Boras G, Yu X, Fonseka HA, Davis G, Velichko AV, Gott JA, Zeng H, Wu S, Parkinson P, Xu X, Mowbray D, Sanchez AM, Liu H. Self-Catalyzed AlGaAs Nanowires and AlGaAs/GaAs Nanowire-Quantum Dots on Si Substrates. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:14338-14347. [PMID: 34276869 PMCID: PMC8279736 DOI: 10.1021/acs.jpcc.1c03680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Self-catalyzed AlGaAs nanowires (NWs) and NWs with a GaAs quantum dot (QD) were monolithically grown on Si(111) substrates via solid-source molecular beam epitaxy. This growth technique is advantageous in comparison to the previously employed Au-catalyzed approach, as it removes Au contamination issues and renders the structures compatible with complementary metal-oxide-semiconductor (CMOS) technology applications. Structural studies reveal the self-formation of an Al-rich AlGaAs shell, thicker at the NW base and thinning towards the tip, with the opposite behavior observed for the NW core. Wide alloy fluctuations in the shell region are also noticed. AlGaAs NW structures with nominal Al contents of 10, 20, and 30% have strong room temperature photoluminescence, with emission in the range of 1.50-1.72 eV. Individual NWs with an embedded 4.9 nm-thick GaAs region exhibit clear QD behavior, with spatially localized emission, both exciton and biexciton recombination lines, and an exciton line width of 490 μeV at low temperature. Our results demonstrate the properties and behavior of the AlGaAs NWs and AlGaAs/GaAs NWQDs grown via the self-catalyzed approach for the first time and exhibit their potential for a range of novel applications, including nanolasers and single-photon sources.
Collapse
Affiliation(s)
- Giorgos Boras
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Xuezhe Yu
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - H. Aruni Fonseka
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - George Davis
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - Anton V. Velichko
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - James A. Gott
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Haotian Zeng
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Shiyao Wu
- Institute
of Physics, Chinese Academy of Science, Beijing 100190, China
| | - Patrick Parkinson
- Department
of Physics and Astronomy and the Photon Science Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Xiulai Xu
- Institute
of Physics, Chinese Academy of Science, Beijing 100190, China
| | - David Mowbray
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - Ana M. Sanchez
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Huiyun Liu
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
8
|
Boras G, Yu X, Fonseka HA, Zhang D, Zeng H, Sanchez AM, Liu H. Checked patterned elemental distribution in AlGaAs nanowire branches via vapor-liquid-solid growth. NANOSCALE 2020; 12:15711-15720. [PMID: 32672269 DOI: 10.1039/d0nr02577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Morphology, crystal defects and crystal phase can significantly affect the elemental distribution of ternary nanowires (NWs). Here, we report the synergic impact of the structure and crystal phase on the composition of branched self-catalyzed AlxGa1-xAs NWs. Branching events were confirmed to increase with Al incorporation rising, while twinning and polytypism were observed to extend from the trunk to the branches, confirming the epitaxial nature of the latter. The growth mechanism of these structures has been ascribed to Ga accumulation at the concave sites on the rough shell. This is in agreement with the ab initio calculations which reveal Ga atoms tend to segregate at the trunk/branch interface. Notably, uncommon, intricate compositional variations are exposed in these branched NWs, where Ga-rich stripes parallel to the growth direction of the branches intersect with another set of periodic arrangements of Ga-rich stripes which are perpendicular to them, leading to the realization of an elemental checked pattern. The periodic variations perpendicular to the growth direction of the branches are caused by the constant rotation of the sample during growth whilst Ga-rich stripes along the growth direction of the branches are understood to be driven by the different nucleation energies and polarities on facets of different crystal phase at the interface between the catalyst droplets and the branched NW tip. These results lead to further comprehension of phase segregation and could assist in the compositional engineering in ternary NWs via harnessing this interesting phenomenon.
Collapse
Affiliation(s)
- Giorgos Boras
- Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK.
| | - Xuezhe Yu
- Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK.
| | - H Aruni Fonseka
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Dong Zhang
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
| | - Haotian Zeng
- Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK.
| | - Ana M Sanchez
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Huiyun Liu
- Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|