1
|
Neefjes J, Gurova K, Sarthy J, Szabó G, Henikoff S. Chromatin as an old and new anticancer target. Trends Cancer 2024; 10:696-707. [PMID: 38825423 PMCID: PMC11479676 DOI: 10.1016/j.trecan.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
Recent genome-wide analyses identified chromatin modifiers as one of the most frequently mutated classes of genes across all cancers. However, chemotherapies developed for cancers involving DNA damage remain the standard of care for chromatin-deranged malignancies. In this review we address this conundrum by establishing the concept of 'chromatin damage': the non-genetic damage to protein-DNA interactions induced by certain small molecules. We highlight anthracyclines, a class of chemotherapeutic agents ubiquitously applied in oncology, as an example of overlooked chromatin-targeting agents. We discuss our current understanding of this phenomenon and explore emerging chromatin-damaging agents as a basis for further studies to maximize their impact in modern cancer treatment.
Collapse
Affiliation(s)
- Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, LUMC, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Jay Sarthy
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA 98109, USA
| | - Gábor Szabó
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Casein-Based Nanoparticles: A Potential Tool for the Delivery of Daunorubicin in Acute Lymphocytic Leukemia. Pharmaceutics 2023; 15:pharmaceutics15020471. [PMID: 36839793 PMCID: PMC9967267 DOI: 10.3390/pharmaceutics15020471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to develop casein-based nanoscale carriers as a potential delivery system for daunorubicin, as a pH-responsive targeting tool for acute lymphocytic leukemia. A coacervation technique followed by nano spray-drying was used for the preparation of drug-loaded casein nanoparticles. Four batches of drug-loaded formulations were developed at varied drug-polymer ratios using a simple coacervation technique followed by spray-drying. They were further characterized using scanning electron microscopy, dynamic light scattering, FTIR spectroscopy, XRD diffractometry, and differential scanning calorimetry. Drug release was investigated in different media (pH 5 and 7.4). The cytotoxicity of the daunorubicin-loaded nanoparticles was compared to that of the pure drug. The influence of the polymer-to-drug ratio on the nanoparticles' properties such as their particle size, surface morphology, production yield, drug loading, entrapment efficiency, and drug release behavior was studied. Furthermore, the cytotoxicity of the drug-loaded nanoparticles was investigated confirming their potential as carriers for daunorubicin delivery.
Collapse
|
3
|
Bennett AN, Huang RX, He Q, Lee NP, Sung WK, Chan KHK. Drug repositioning for esophageal squamous cell carcinoma. Front Genet 2022; 13:991842. [PMID: 36246638 PMCID: PMC9554346 DOI: 10.3389/fgene.2022.991842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Esophageal cancer (EC) remains a significant challenge globally, having the 8th highest incidence and 6th highest mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common form of EC in Asia. Crucially, more than 90% of EC cases in China are ESCC. The high mortality rate of EC is likely due to the limited number of effective therapeutic options. To increase patient survival, novel therapeutic strategies for EC patients must be devised. Unfortunately, the development of novel drugs also presents its own significant challenges as most novel drugs do not make it to market due to lack of efficacy or safety concerns. A more time and cost-effective strategy is to identify existing drugs, that have already been approved for treatment of other diseases, which can be repurposed to treat EC patients, with drug repositioning. This can be achieved by comparing the gene expression profiles of disease-states with the effect on gene-expression by a given drug. In our analysis, we used previously published microarray data and identified 167 differentially expressed genes (DEGs). Using weighted key driver analysis, 39 key driver genes were then identified. These driver genes were then used in Overlap Analysis and Network Analysis in Pharmomics. By extracting drugs common to both analyses, 24 drugs are predicted to demonstrate therapeutic effect in EC patients. Several of which have already been shown to demonstrate a therapeutic effect in EC, most notably Doxorubicin, which is commonly used to treat EC patients, and Ixazomib, which was recently shown to induce apoptosis and supress growth of EC cell lines. Additionally, our analysis predicts multiple psychiatric drugs, including Venlafaxine, as repositioned drugs. This is in line with recent research which suggests that psychiatric drugs should be investigated for use in gastrointestinal cancers such as EC. Our study shows that a drug repositioning approach is a feasible strategy for identifying novel ESCC therapies and can also improve the understanding of the mechanisms underlying the drug targets.
Collapse
Affiliation(s)
- Adam N. Bennett
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rui Xuan Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wing-Kin Sung
- Department of Computer Sciences, National University of Singapore, Singapore, Singapore
| | - Kei Hang Katie Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, Providence, RI, United States
| |
Collapse
|
4
|
Kong L, Deng Z, You D. Chemistry and biosynthesis of bacterial polycyclic xanthone natural products. Nat Prod Rep 2022; 39:2057-2095. [PMID: 36083257 DOI: 10.1039/d2np00046f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Covering: up to the end of 2021Bacterial polycyclic xanthone natural products (BPXNPs) are a growing family of natural xanthones featuring a pentangular architecture with various modifications to the tricyclic xanthone chromophore. Their structural diversities and various activities have fueled biosynthetic and chemical synthetic studies. Moreover, their more potent activities than the clinically used drugs make them potential candidates for the treatment of diseases. Future unraveling of structure activity relationships (SARs) will provide new options for the (bio)-synthesis of drug analogues with higher activities. This review summarizes the isolation, structural elucidation and biological activities and more importantly, the recent strategies for the microbial biosynthesis and chemical synthesis of BPXNPs. Regarding their biosynthesis, we discuss the recent progress in enzymes that synthesize tricyclic xanthone, the protein candidates for structural moieties (methylene dioxygen bridge and nitrogen heterocycle), tailoring enzymes for methylation and halogenation. The chemical synthesis part summarizes the recent methodology for the division synthesis and coupling construction of achiral molecular skeletons. Ultimately, perspectives on the biosynthetic study of BPXNPs are discussed.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Xue L, Yu D, Wang L, Sun J, Song Y, Jia Y, Wu A, Zhang B, Mi W, Fan H, Sun H. Selective Antitumor Activity and Photocytotoxicity of Glutathione-Activated Abasic Site Trapping Agents. ACS Chem Biol 2022; 17:797-803. [PMID: 35297620 DOI: 10.1021/acschembio.2c00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abasic (AP) sites are one of the most common DNA lesions in cells. Aldehyde-reactive alkoxyamines capture AP sites and block the activity of APE1, the enzyme responsible for initiating their repair. Blocking the APE1 repair of AP sites leads to cell death, and it is an actively investigated approach for treating cancer. However, unselective AP site capture in different cells produces side effects and limits the application of alkoxyamines in chemotherapy. Herein we take advantage of the higher glutathione (GSH) concentration in cancer cells over normal cells to develop GSH-inducible agents that selectively kill cancer cells. 2,4-Dinitrobenzenesulfonamide caged coumarin-based alkoxyamines 1 and 2 are selectively revealed by GSH to release SO2 and fluorescent coumarin-based alkoxyamines 3 and 4 that trap AP sites in cells. GSH-directed AP site trapping and SO2 release result in selective cytotoxicity (defined as IC50WI38/IC50H1299) against H1299 lung cancer cells over normal WI38 lung cells, ranging from 1.8 to 2.8 for 1 and 2. The alkylating agent methylmethanesulfonate (MMS) promotes the formation of AP sites in cells and enhances the cytotoxicity of agent 1 in a dose-dependent way. Moreover, the comet assay and γH2AX assay suggest that AP adducts form a highly toxic DNA interstrand cross-link (ICL) upon photolysis, leading to further cell death. DNA flow cytometric analysis showed that 1 promoted cell apoptosis in the early stage and induced G2/M phase cell-cycle arrest. The 2,4-dinitrobenzenesulfonamide-caged alkoxyamines exhibited selective antitumor activity and photocytotoxicity in cancer cells, illuminating their potential as GSH-directed chemotherapeutic agents.
Collapse
Affiliation(s)
- Li Xue
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Dehao Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Lingling Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Ying Song
- Institute of Biomedical Research, Yunnan University, Kunming 650500, P. R. China
| | - Yuanyuan Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Ang Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming 650500, P. R. China
| | - Wenyi Mi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Heli Fan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
6
|
Orysyk SI, Baranets S, Borovyk PV, Palchykovska LG, Zborovskii YL, Orysyk VV, Likhanov AF, Platonov MO, Kovalskyy DB, Shyryna TV, Danylenko Y, Hurmach VV, Pekhnyo VI, Vovk MV. Mononuclear π-complexes of Pd(II) and Pt(II) with 1-allyl-3-(2-hydroxyethyl)thiourea: Synthesis, structure, molecular docking, DNA binding ability and genotoxic activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
de Freitas PP, Ribeiro RCB, Dos Santos Guimarães I, Moreira CS, Rocha DR, de Carvalho da Silva F, Ferreira VF, Gimba ERP. (3,3'-Methylene)bis-2-hydroxy-1,4-naphthoquinones induce cytotoxicity against DU145 and PC3 cancer cells by inhibiting cell viability and promoting cell cycle arrest. Mol Biol Rep 2021; 48:3253-3263. [PMID: 34009563 DOI: 10.1007/s11033-021-06406-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
We developed a novel method for the synthesis of bis-naphthoquinones (BNQ), which are hybrids of lawsone (2-hydroxy-1,4-naphthoquinone) and 3-hydroxy-juglone (3,5-dihydroxy-1,4-naphthoquinone). The anticancer activity of three synthesized compounds, named 4 (RC10), 5 (RCDFC), and 6 (RCDOH) was evaluated in vitro against two metastatic prostate cancer (PCa) cell lines, DU145 and PC3, using MTT assays. We found that 4 (RC10) and 5 (RCDFC) induced cytotoxicity against DU145 and PC3 cells. Flow cytometry analysis revealed that these two compounds promoted cell cycle arrest in G1/S and G2/M phases, increased Sub-G1 peak and induced inhibition in cell viability. We also showed that these effects are cell-type context dependent and more selective for these tested PCa cells than for HUVEC non-tumor cells. The two BNQ compounds 4 (RC10) and 5 (RCDFC) displayed promising anticancer activity against the two tested metastatic PCa cell lines, DU145 and PC3. Their effects are mainly associated with inhibition of cell viability, possibly through apoptotic cell death, besides altering the SubG1, G1/S and G2/M phases of cell cycle. 5 (RCDFC) compound was found to be more selective than 4 (RC10), when comparing their cytotoxic effects in relation to HUVEC non-tumoral cells. Future work should also test these compounds in combination with other chemotherapeutic drugs to evaluate their effects on further sensitizing drug-resistant metastatic PCa cells.
Collapse
Affiliation(s)
| | - Ruan Carlos Busquet Ribeiro
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, 24020-150, Brazil
| | - Isabella Dos Santos Guimarães
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Laboratório de Pesquisa Translacional, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Caroline S Moreira
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, 24020-150, Brazil
| | - David R Rocha
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, 24020-150, Brazil
| | | | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Santa Rosa, Niterói, RJ, 24241-002, Brazil
| | - Etel Rodrigues Pereira Gimba
- Instituto Nacional de Câncer, Coordenação de Pesquisa, Centro, Rio de Janeiro, RJ, 20231-050, Brazil. .,Departamento de Ciências da Natureza, Instituto de Humanidade E Saúde (IHS), Universidade Federal Fluminense, Campus de Rio das Ostras, Rio das Ostras, RJ, 28880-00, Brazil. .,Programa de Pós Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Centro, Rio de Janeiro, RJ, 20231-050, Brazil. .,Programa de Pós Graduação em Ciências Biomédicas-Fisiologia E Farmacologia, Instituto Biomédico, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, 24020-150, Brazil.
| |
Collapse
|
8
|
Xie Y, Zhang L, Li YY, He D, Zheng LF. Chrysophanol localizes in mitochondria to promote cell death through upregulation of mitochondrial cyclophilin D in HepG2 cells. CHINESE HERBAL MEDICINES 2021; 13:221-227. [PMID: 36117497 PMCID: PMC9476804 DOI: 10.1016/j.chmed.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Chrysophanol (Chry) displays potent anticancer activity in human cancer cells and animal models, but the cellular targets of Chry have not been fully defined. Herein, we speculated whether mitochondria were a target involved in Chry-induced cytotoxicity. Methods Human liver cancer cell line HepG2 was incubated. The cytotoxicity was evaluated by MTT assay. Mitochondria localization was evaluated by a confocal microscopy. Mitochondrial membrane potential ΔΨm was detected by TMRE staining and determined by the flow cytometer. The levels of ATP, mitochondrial superoxide anions, and GSH/GSSG were determined according to the assay kits. The apoptosis were evaluated through Hoechst33342/PI and Annexin V/PI staining, respectively. The expression of cyclophilin D (CyPD) was determined by immunoblot method, and the interaction between CyPD and Chry was analyzed by molecule docking procedure. Results Chry itself mainly localized in mitochondria to cause mitochondrial dysfunction and cell death in HepG2 cells. As regard to the mechanism, cyclosporin A as the inhibitor for the formation of mitochondrial permeability transition pore (mPTP) moderately suppressed cell death, indicating mPTP involved in the process of cell death. Further, Chry enhanced the protein expression of Cyclophilin D (CyPD) which is a molecular componentry and a modulator of mPTP, while antioxidant N-acetyl-L-cysteine inhibited the expression of CyPD. Molecule docking procedure disclosed two hydrogen-bonds existed in CyPD-Chry complex with −11.94 kal/mol of the binding affinity value. Besides, the mtDNA-deficient HepG2-ρ0 cells were much resistant to Chry-induced cell death, indicating mtDNA at least partly participated in cell death. A combination of Chry and VP-16 produced the synergism effect toward cell viability and ΔΨm, while Chry combined with Cis-Pt elicited the antagonism effect. Conclusion Taken together, enrichment in mitochondria and actions on mPTP, CyPD and mtDNA provides an insight into the anticancer mechanism of Chry. The combination therapy for Chry with clinical drugs may deserve to further explore.
Collapse
|
9
|
Visone V, Szabó I, Perugino G, Hudecz F, Bánóczi Z, Valenti A. Topoisomerases inhibition and DNA binding mode of daunomycin-oligoarginine conjugate. J Enzyme Inhib Med Chem 2021; 35:1363-1371. [PMID: 32552137 PMCID: PMC7717705 DOI: 10.1080/14756366.2020.1780226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is a major health issue adsorbing the attention of a biomedical research. To fight this disease, new drugs are developed, specifically tailored to target biological pathways or peculiar components of the tumour cells. Particularly interesting is the use of intercalating agents as drugs capable to bind DNA and inhibit enzymes involved in DNA metabolism. Anthracyclines are the most commonly used anticancer drugs. In particular, daunomycin is used to cancer treatment by exploiting its ability to intercalate DNA and inhibit the activity of DNA topoisomerases implicated in the replication processes. Unfortunately, clinical application of anthracyclines is limited by their side effects. The conjugation with specific carriers could affect the selectivity and reduce side effect by improving stability and/or cellular uptake properties. We here report the biochemical characterisation of a daunomycin oligopeptide conjugate containing six residues of arginine, by the analysis of its fluorescence properties, DNA interaction and topoisomerases inhibitory effects.
Collapse
Affiliation(s)
- Valeria Visone
- Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Ferenc Hudecz
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Anna Valenti
- Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| |
Collapse
|