1
|
Li H, Kong X, Fang Y, Hou J, Zhang W, Zhang Y, Wei J, Li X. Aphis craccivora (Hemiptera: Aphididae) synthesizes juvenile hormone III via a pathway involving epoxidation followed by esterification, potentially providing an epoxidation active site for the synthesis of juvenile hormone SB3. INSECT SCIENCE 2024. [PMID: 39365891 DOI: 10.1111/1744-7917.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
Juvenile hormones (JHs) play a crucial role in regulating development and reproduction in insects. Most insects predominantly synthesize JH III, which typically involves esterification followed by epoxidation, lepidopteran insects use a pathway of epoxidation followed by esterification. Although hemipteran insects have JH III and JH skipped bisepoxide III (JH SB3), the synthesis pathway and key epoxidases remain unclear. This study was conducted on Aphis craccivora, and demonstrated that corpora allata, microsomes, Ac-CYP15C1, and Ac-JHAMT catalyze JH III production in vitro, establishing the pathway of epoxidation followed by esterification. These findings were further confirmed through RNA interference and molecular docking. The presence of JH III and JH SB3 in A. craccivora was identified, and their synthesis pathway was elucidated as follows: Ac-CYP15C1 oxidizes farnesic acid to JH A, followed by methylation to JH III by Ac-JHAMT, possibly providing an epoxidation site on the second carbon for JH SB3. This alteration may significantly contribute to the differentiation and functional diversification of JH types in insects.
Collapse
Affiliation(s)
- Haolin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xue Kong
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Fang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jiguang Wei
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Smeele ZE, Baty JW, Lester PJ. Effects of Deformed Wing Virus-Targeting dsRNA on Viral Loads in Bees Parasitised and Non-Parasitised by Varroa destructor. Viruses 2023; 15:2259. [PMID: 38005935 PMCID: PMC10674661 DOI: 10.3390/v15112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The Varroa destructor mite is a devastating parasite of honey bees; however the negative effects of varroa parasitism are exacerbated by its role as an efficient vector of the honey bee pathogen, Deformed wing virus (DWV). While no direct treatment for DWV infection is available for beekeepers to use on their hives, RNA interference (RNAi) has been widely explored as a possible biopesticide approach for a range of pests and pathogens. This study tested the effectiveness of three DWV-specific dsRNA sequences to lower DWV loads and symptoms in honey bees reared from larvae in laboratory mini-hives containing bees and varroa. The effects of DWV-dsRNA treatment on bees parasitised and non-parasitised by varroa mites during development were investigated. Additionally, the impact of DWV-dsRNA on viral loads and gene expression in brood-parasitising mites was assessed using RNA-sequencing. Bees parasitised during development had significantly higher DWV levels compared to non-parasitised bees. However, DWV-dsRNA did not significantly reduce DWV loads or symptoms in mini-hive reared bees, possibly due to sequence divergence between the DWV variants present in bees and varroa and the specific DWV-dsRNA sequences used. Varroa mites from DWV-dsRNA treated mini-hives did not show evidence of an elevated RNAi response or significant difference in DWV levels. Overall, our findings show that RNAi is not always successful, and multiple factors including pathogen diversity and transmission route may impact its efficiency.
Collapse
Affiliation(s)
- Zoe E. Smeele
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (P.J.L.)
| | | | | |
Collapse
|
3
|
Elston KM, Maeda GP, Perreau J, Barrick JE. Addressing the challenges of symbiont-mediated RNAi in aphids. PeerJ 2023; 11:e14961. [PMID: 36874963 PMCID: PMC9983426 DOI: 10.7717/peerj.14961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/05/2023] [Indexed: 03/06/2023] Open
Abstract
Because aphids are global agricultural pests and models for bacterial endosymbiosis, there is a need for reliable methods to study and control their gene function. However, current methods available for aphid gene knockout and knockdown of gene expression are often unreliable and time consuming. Techniques like CRISPR-Cas genome editing can take several months to achieve a single gene knockout because they rely on aphids going through a cycle of sexual reproduction, and aphids often lack strong, consistent levels of knockdown when fed or injected with molecules that induce an RNA interference (RNAi) response. In the hopes of addressing these challenges, we attempted to adapt a new method called symbiont-mediated RNAi (smRNAi) for use in aphids. smRNAi involves engineering a bacterial symbiont of the insect to continuously supply double-stranded RNA (dsRNA) inside the insect body. This approach has been successful in thrips, kissing bugs, and honeybees. We engineered the laboratory Escherichia coli strain HT115 and the native aphid symbiont Serratia symbiotica CWBI-2.3T to produce dsRNA inside the gut of the pea aphid (Acyrthosiphon pisum) targeting salivary effector protein (C002) or ecdysone receptor genes. For C002 assays, we also tested co-knockdown with an aphid nuclease (Nuc1) to reduce RNA degradation. However, we found that smRNAi was not a reliable method for aphid gene knockdown under our conditions. We were unable to consistently achieve the expected phenotypic changes with either target. However, we did see indications that elements of the RNAi pathway were modestly upregulated, and expression of some targeted genes appeared to be somewhat reduced in some trials. We conclude with a discussion of the possible avenues through which smRNAi, and aphid RNAi in general, could be improved in the future.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States
| | - Gerald P Maeda
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States
| | - Julie Perreau
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States.,Department of Integrative Biology, The University of Texas, Austin, Texas, United States
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States
| |
Collapse
|
4
|
Ullah RMK, Waris MI, Qureshi SR, Rasool F, Duan SG, Zaka SM, Atiq MN, Wang MQ. Silencing of an odorant binding protein (SaveOBP10) involved in the behavioural shift of the wheat aphid Sitobion avenae (Fabricius). INSECT MOLECULAR BIOLOGY 2022; 31:568-584. [PMID: 35499809 DOI: 10.1111/imb.12780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Insects are highly reliant on their active olfactory system in which odorant binding proteins play a role to selectivity and sensitivity during odour perception and processing. This study sets out to determine whether and to which extent the antennal loaded SaveOBP10 in English grain aphid Sitobion avenae, contributes in olfactory processing during host selection. To understand this possible relationship, we purified the SaveOBP10 recombinant protein and performed fluorescence ligand binding tests, molecular docking, RNA interference (RNAi) and behavioural trials. The results showed that SaveOBP10 had strong binding affinities (Ki ≤5 μM) with most of wheat plant volatiles at pH 5.0 as compared to pH 7.4. In Y-tube olfactometer bioassays, the S. avenae was attracted behaviourally towards pentadecane, butylated hydroxytoluene, tetradecane and β-caryophyllene however repelled by naphthalene. After RNAi of SaveOBP10, the aphid showed nonattraction towards β-caryophyllene and nonsignificant behavioural response to pentadecane, butylated hydroxytoluene and tetradecane. Furthermore, the three-dimensional structure modelling and molecular docking of SaveOBP10 were performed to the volatiles with high binding abilities. Together these findings indicate that SaveOBP10 can bind more strongly to the volatiles that involved in S. avenae behaviour regulation and possibly will contribute effectively in S. avenae integrated pest management.
Collapse
Affiliation(s)
- Rana Muhammad Kaleem Ullah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Irfan Waris
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sundas Rana Qureshi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fatima Rasool
- National Centre for Bioinformatics, Quaid-i-Azam University, Pakistan
| | - Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Syed Muhammad Zaka
- Faculty of Agricultural Sciences and Technology, Department of Entomology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Nauman Atiq
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Marmonier A, Velt A, Villeroy C, Rustenholz C, Chesnais Q, Brault V. Differential gene expression in aphids following virus acquisition from plants or from an artificial medium. BMC Genomics 2022; 23:333. [PMID: 35488202 PMCID: PMC9055738 DOI: 10.1186/s12864-022-08545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Poleroviruses, such as turnip yellows virus (TuYV), are plant viruses strictly transmitted by aphids in a persistent and circulative manner. Acquisition of either virus particles or plant material altered by virus infection is expected to induce gene expression deregulation in aphids which may ultimately alter their behavior. RESULTS By conducting an RNA-Seq analysis on viruliferous aphids fed either on TuYV-infected plants or on an artificial medium containing purified virus particles, we identified several hundreds of genes deregulated in Myzus persicae, despite non-replication of the virus in the vector. Only a few genes linked to receptor activities and/or vesicular transport were common between the two modes of acquisition with, however, a low level of deregulation. Behavioral studies on aphids after virus acquisition showed that M. persicae locomotion behavior was affected by feeding on TuYV-infected plants, but not by feeding on the artificial medium containing the purified virus particles. Consistent with this, genes potentially involved in aphid behavior were deregulated in aphids fed on infected plants, but not on the artificial medium. CONCLUSIONS These data show that TuYV particles acquisition alone is associated with a moderate deregulation of a few genes, while higher gene deregulation is associated with aphid ingestion of phloem from TuYV-infected plants. Our data are also in favor of a major role of infected plant components on aphid behavior.
Collapse
Affiliation(s)
- Aurélie Marmonier
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Amandine Velt
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Claire Villeroy
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Camille Rustenholz
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Quentin Chesnais
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Véronique Brault
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France.
| |
Collapse
|
6
|
Jayasinghe WH, Kim H, Nakada Y, Masuta C. A plant virus satellite RNA directly accelerates wing formation in its insect vector for spread. Nat Commun 2021; 12:7087. [PMID: 34873158 PMCID: PMC8648847 DOI: 10.1038/s41467-021-27330-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Cucumber mosaic virus (CMV) often accompanies a short RNA molecule called a satellite RNA (satRNA). When infected with CMV in the presence of Y-satellite RNA (Y-sat), tobacco leaves develop a green mosaic, then turn yellow. Y-sat has been identified in the fields in Japan. Here, we show that the yellow leaf colour preferentially attracts aphids, and that the aphids fed on yellow plants, which harbour Y-sat-derived small RNAs (sRNAs), turn red and subsequently develop wings. In addition, we found that leaf yellowing did not necessarily reduce photosynthesis, and that viral transmission was not greatly affected despite the low viral titer in the Y-sat-infected plants. Y-sat-infected plants can therefore support a sufficient number of aphids to allow for efficient virus transmission. Our results demonstrate that Y-sat directly alters aphid physiology via Y-sat sRNAs to promote wing formation, an unprecedented survival strategy that enables outward spread via the winged insect vector.
Collapse
Affiliation(s)
- Wikum H Jayasinghe
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9 Nishi 9, Sapporo, 060-8589, Japan
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Hangil Kim
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Yusuke Nakada
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
7
|
Zhou C, Li D, Shi X, Zhang J, An Q, Wu Y, Kang L, Li JQ, Pan C. Nanoselenium Enhanced Wheat Resistance to Aphids by Regulating Biosynthesis of DIMBOA and Volatile Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14103-14114. [PMID: 34784717 DOI: 10.1021/acs.jafc.1c05617] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanism of nanoselenium (nano-Se) improving the resistance induced by plant components to aphids is unclear. In this study, foliar sprayed nano-Se (5.0 mg/L) could significantly reduce the Sitobion avenae number (36%) compared with that in the control. Foliar application of nano-Se enhanced the antioxidant capacity by reducing malondialdehyde (MDA) and increasing GSH-Px, CAT, GSH, Pro, and VE concentrations in wheat seedlings. The phenylpropane pathway was activated by nano-Se biofortification, which increased apigenin and caffeic acid concentrations. The high-level expression of the related genes (TaBx1A, TaBx3A, TaBx4A, TaASMT2, and TaCOMT) induced the promotion of melatonin (88.6%) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) (64.3%). Different ratios of the secondary metabolites to nano-Se were taken to examine the effects on resistance of wheat to S. avenae. The results revealed that the combination of nano-Se and melatonin could achieve the best overall performance by reducing the S. avenae number by 52.2%. The study suggests that the coordinated applications of nano-Se and melatonin could more effectively improve the wheat resistance to aphids via the promotion of volatile organic compound synthesis and modulation in phenylpropane and indole metabolism pathways.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Dong Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Xinlei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Quanshun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Jia-Qi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| |
Collapse
|