1
|
Rydzik Ł, Wąsacz W, Ambroży T, Javdaneh N, Brydak K, Kopańska M. The Use of Neurofeedback in Sports Training: Systematic Review. Brain Sci 2023; 13:brainsci13040660. [PMID: 37190625 PMCID: PMC10136619 DOI: 10.3390/brainsci13040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/14/2023] Open
Abstract
Biofeedback training is a method commonly used in various fields of life, for example, in medicine, sports training or business. In recent studies, it has been shown that biofeedback, and neurofeedback, can affect the performance of professional athletes. Training based on the neurofeedback method includes exercising the brain waves. The aim of the article is to evaluate the influence of neurofeedback training on the physical fitness of professional athletes representing various sports disciplines, such as judo, volleyball and soccer. Based on 10 scientific papers from various sources, including PubMed, the latest research on neurofeedback and its impact on athletes has been reviewed. On the basis of the literature review from 2012 to 2022 on the neurofeedback method in sports training, it can be stated that this type of practice has a significant impact on physical fitness and sports performance. This review comprised 10 research studies with 491 participants in the neurofeedback groups, and 62 participants in the control group. Two reviewers independently extracted data and evaluated the quality of the studies utilising the PEDro scale. Properly planned and conducted neurofeedback training affects stimulation and improvement of many variables (reducing stress levels, increasing the ability to self-control physiological factors, enhancing behavioural efficiency and meliorating the speed of reaction to a stimulus).
Collapse
Affiliation(s)
- Łukasz Rydzik
- Institute of Sports Sciences, University of Physical Education, 31-571 Krakow, Poland
- Correspondence: (Ł.R.); (M.K.)
| | - Wojciech Wąsacz
- Institute of Sports Sciences, University of Physical Education, 31-571 Krakow, Poland
| | - Tadeusz Ambroży
- Institute of Sports Sciences, University of Physical Education, 31-571 Krakow, Poland
| | - Norollah Javdaneh
- Department of Biomechanics and Sports Injuries, Kharazmi University of Tehran, Tehran 14911-15719, Iran
| | - Karolina Brydak
- Student Science Club “Reh-Tech”, Institute of Medical Sciences, University of Rzeszów, 35-959 Rzeszow, Poland
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, Medical College of Rzeszów University, 35-959 Rzeszow, Poland
- Correspondence: (Ł.R.); (M.K.)
| |
Collapse
|
2
|
Armengol-Urpi A, Salazar-Gomez AF, Sarma SE. A Novel Approach to Decode Covert Spatial Attention Using SSVEP and Single-Frequency Phase-Coded Stimuli. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5694-5699. [PMID: 34892414 DOI: 10.1109/embc46164.2021.9630688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper investigates for the first time the use of single-frequency phase-coded stimuli to detect covert visuo-spatial attention (CVSA) with steady-state visual evoked potentials (SSVEP). Two 15Hz pattern-onset stimulations were encoded with opposite phases and simultaneously presented on a LCD monitor. The effects of attending each stimulus on the amplitudes and phases of the evoked SSVEPs across the visual cortex are explored. A real-time CVSA classification experiment was simulated offline with 9 BCI-naive subjects, achieving an average classification accuracy of 88.4 ± 8% SE. Our results are, to our knowledge, the first report that CVSA can be decoded with SSVEP using single-frequency phase-coded stimuli. This opens opportunities for attention-tracking applications with largely increased number of targets.
Collapse
|
3
|
Poltavski D, Biberdorf D, Praus Poltavski C. Which Comes First in Sports Vision Training: The Software or the Hardware Update? Utility of Electrophysiological Measures in Monitoring Specialized Visual Training in Youth Athletes. Front Hum Neurosci 2021; 15:732303. [PMID: 34690722 PMCID: PMC8527177 DOI: 10.3389/fnhum.2021.732303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
In the present study we combined popular methods of sports vision training (SVT) with traditional oculomotor protocols of Optometric Vision Therapy (OVT) and electrophysiological indexes of EEG and VEP activity to monitor training progress and changes in performance of youth ice hockey players without the history of concussion. We hypothesized that administration of OVT protocols before SVT training may result in larger performance improvements compared to the reverse order due to the initial strengthening of visual hardware capable of handling greater demands during training of visuomotor integration and information processing skills (visual software). In a cross-over design 53 youth ice hockey players (ages 13-18) were randomly assigned to one of the two training groups. Group one (hardware-software group) completed 5 weeks of oculomotor training first followed by 5 weeks of software training. For group 2 (software-hardware) the order of procedures were reversed. After 10 weeks of training both groups significantly improved their performance on all but one measure of the Nike/Senaptec Sensory station measures. Additionally, the software-hardware training order resulted in significantly lower frontal theta-to-gamma amplitude ratios on the Nike/Senaptec test of Near-Far Quickness as well as in faster P100 latencies. Both training orders also resulted in significant decreases in post-treatment P100 amplitude to transient VEP stimuli as well as decreased theta-gamma ratios for perception span, Go/No-Go and Hand Reaction time. The observed changes in the electrophysiological indexes in the present study are thought to reflect greater efficiency in visual information processing and cognitive resource allocation following 10 weeks of visual training. There is also some evidence of the greater effectiveness of the software-hardware training order possibly due to the improved preparedness of the oculomotor system in the youth athletes for administration of targeted protocols of the Optometric Vision Therapy.
Collapse
Affiliation(s)
- Dmitri Poltavski
- Department of Psychology, University of North Dakota, Grand Forks, ND, United States
| | | | | |
Collapse
|
4
|
Li J, Yang J, Qin Y, Zhang Y. Expert and Novice Goalkeepers' Perceptions of Changes During Open Play Soccer. Percept Mot Skills 2021; 128:2725-2744. [PMID: 34459301 DOI: 10.1177/00315125211040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study we investigated expert and novice football (i.e., soccer) goalkeepers' three stages of perceiving changes in open play situations-detection, localization, and identification-with and without time constraints. We adopted the continual cycling flicker paradigm to investigate goalkeepers' perceptions when provided with sufficient time (Experiment 1), and we utilized the limited display one-shot change detection paradigm to study their perceptions under time constraints (Experiment 2). Images of goalkeepers' first-person views of open play soccer scenes were used as stimuli. Semantic or non-semantic changes in these scenes were produced by modifying one element in each image. Separate groups of expert and novice goalkeepers were required to detect, localize, and identify the scene changes. We found that expert goalkeepers detected scene changes more quickly than novices under both time allowances. Furthermore, compared to novices, experts localized the changes more accurately under time constraints and identified the changes more quickly when given sufficient time. Additionally, semantic changes were detected more quickly and localized and identified more accurately than non-semantic changes when there was sufficient time. Under time constraints expert goalkeepers' greater efficiency was likely due to pre-attentive processing; with sufficient time, they were able to focus attention to extracting detailed information for identification.
Collapse
Affiliation(s)
- Jie Li
- Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China.,School of Psychology, 47838Beijing Sport University, Beijing Sport University, Beijing, China
| | - Jing Yang
- School of Psychology, 47838Beijing Sport University, Beijing Sport University, Beijing, China.,Beijing Jianhua Experimental Etown School, Beijing, China
| | - Yue Qin
- School of Psychology, 47838Beijing Sport University, Beijing Sport University, Beijing, China
| | - Yu Zhang
- School of Psychology, 47838Beijing Sport University, Beijing Sport University, Beijing, China
| |
Collapse
|
5
|
EEG-based multi-level stress classification with and without smoothing filter. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Perez-Valero E, Vaquero-Blasco MA, Lopez-Gordo MA, Morillas C. Quantitative Assessment of Stress Through EEG During a Virtual Reality Stress-Relax Session. Front Comput Neurosci 2021; 15:684423. [PMID: 34335216 PMCID: PMC8317646 DOI: 10.3389/fncom.2021.684423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have addressed stress level classification via electroencephalography (EEG) and machine learning. These works typically use EEG-based features, like power spectral density (PSD), to develop stress classifiers. Nonetheless, these classifiers are usually limited to the discrimination of two (stress and no stress) or three (low, medium, and high) stress levels. In this study we propose an alternative for quantitative stress assessment based on EEG and regression algorithms. To this aim, we conducted a group of 23 participants (mean age 22.65 ± 5.48) over a stress-relax experience while monitoring their EEG. First, we stressed the participants via the Montreal imaging stress task (MIST), and then we led them through a 360-degree virtual reality (VR) relaxation experience. Throughout the session, the participants reported their self-perceived stress level (SPSL) via surveys. Subsequently, we extracted spectral features from the EEG of the participants and we developed individual models based on regression algorithms to predict their SPSL. We evaluated stress regression performance in terms of the mean squared percentage error (MSPE) and the correlation coefficient (R2). The results yielded from this evaluation (MSPE = 10.62 ± 2.12, R2 = 0.92 ± 0.02) suggest that our approach predicted the stress level of the participants with remarkable performance. These results may have a positive impact in diverse areas that could benefit from stress level quantitative prediction. These areas include research fields like neuromarketing, and training of professionals such as surgeons, industrial workers, or firefighters, that often face stressful situations.
Collapse
Affiliation(s)
- Eduardo Perez-Valero
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain.,Research Centre for Information and Communications Technologies, University of Granada, Granada, Spain
| | - Miguel A Vaquero-Blasco
- Research Centre for Information and Communications Technologies, University of Granada, Granada, Spain.,Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| | - Miguel A Lopez-Gordo
- Research Centre for Information and Communications Technologies, University of Granada, Granada, Spain.,Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| | - Christian Morillas
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain.,Research Centre for Information and Communications Technologies, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Müller V, Perdikis D, Mende MA, Lindenberger U. Interacting brains coming in sync through their minds: an interbrain neurofeedback study. Ann N Y Acad Sci 2021; 1500:48-68. [PMID: 33956993 DOI: 10.1111/nyas.14605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
Neurophysiological evidence shows that interpersonal action coordination is accompanied by interbrain synchronization (IBS). However, the functional significance of this association remains unclear. Using two experimental designs, we explored whether IBS is amenable to neurofeedback (NFB). Feedback was provided either as two balls approaching each other (so-called ball design), or as two pendula, each reflecting the oscillatory activity of one of the two participants (so-called pendulum design). The NFB was provided at delta (i.e., 2.5 Hz) and theta (i.e., 5 Hz) electroencephalography frequencies, and manipulated by enhanced and inverse feedback. We showed that the participants were able to increase IBS by using NFB, especially when it was fed back at the theta frequency. Apart from intra- and interbrain coupling, other oscillatory activities (e.g., power spectral density, peak amplitude, and peak frequency) also changed during the task compared with the rest. Moreover, all the measures showed specific correlations with the subjective postsurvey item scores, reflecting subjective feeling and appraisal. We conclude that the use of IBS for NFB might help in specifying the contribution of IBS to interpersonal action coordination and in providing important information about the neural mechanisms of social interaction and the causal dimension of IBS.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Dionysios Perdikis
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Brain Simulation Section, Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Melinda A Mende
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Division of Cognitive Sciences, Department of Psychology, University of Potsdam, Potsdam, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| |
Collapse
|
8
|
Hülsdünker T, Gunasekara N, Mierau A. Short- and Long-Term Stroboscopic Training Effects on Visuomotor Performance in Elite Youth Sports. Part 2: Brain-Behavior Mechanisms. Med Sci Sports Exerc 2021; 53:973-985. [PMID: 33060549 DOI: 10.1249/mss.0000000000002543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Stroboscopic training has repeatedly been shown to improve visuomotor abilities. However, although performance improvements were attributed to visual processes, information on the neurophysiological mechanisms is missing. Part 2 of this study investigated the effects of stroboscopic training on neural visual and motor functions and its contribution to training-induced changes in visuomotor reaction time. METHODS Forty-five young elite badminton athletes participated in this study, of which 32 (age, 13.7 yr) were included in the final data analysis. Participants were assigned to an intervention (stroboscopic vision) or control group (normal vision). Before and after a 10-wk training and after a 6-wk retention period, participants performed visual perception and reaction tasks in response to visual motion stimuli. The N2 and N2-r motion onset visual-evoked potentials, its linear combination (Vlc), and the BA6 negativity potential were determined using a 64-channel EEG. RESULTS A significant TIME-GROUP effect was observed for the Vlc score (P = 0.019, ηp2 = 0.18), indicating a lower Vlc in the intervention group. However, post hoc tests did not reach significance. Within-subject correlation analyses revealed that changes in reaction speed were related to latency changes in N2 (r = 0.59, P < 0.001), N2-r (r = -0.64, P < 0.001), and the combined Vlc (r = 0.68, P < 0.001). Regression analyses across participants including multiple (N2/N2-r) or single (Vlc) predictors provided an explained variance of >60% (N2/N2-r, r2 = 0.62; Vlc, r2 = 0.64). No training effects or correlations were observed for the BA6 negativity. CONCLUSIONS The results indicate that faster visuomotor reactions after stroboscopic training are accompanied by accelerated visual perception and processing, whereas motor processes seemed to be unaffected. Stroboscopic training may be promising to specifically address the visual system in visuomotor-demanding sports.
Collapse
Affiliation(s)
- Thorben Hülsdünker
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, LUXEMBOURG
| | - Nadira Gunasekara
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, GERMANY
| | | |
Collapse
|
9
|
Vaquero-Blasco MA, Perez-Valero E, Morillas C, Lopez-Gordo MA. Virtual Reality Customized 360-Degree Experiences for Stress Relief. SENSORS 2021; 21:s21062219. [PMID: 33810135 PMCID: PMC8004715 DOI: 10.3390/s21062219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
The latest studies in virtual reality (VR) have evidenced the potential of this technology to reproduce environments from multiple domains in an immersive way. For instance, in stress relief research, VR has been presented as a portable and inexpensive alternative to chromotherapy rooms, which require an adapted space and are expensive. In this work, we propose a portable and versatile alternative to the traditional chromotherapy color-loop treatment through four different 360-degree virtual experiences. A group of 23 healthy participants (mean age 22.65 ± 5.48) were conducted through a single-session experience divided into four phases while their electroencephalography (EEG) was recorded. First, they were stressed via the Montreal imaging stress task (MIST), and then relaxed using our VR proposal. We applied the Wilcoxon test to evaluate the relaxation effect in terms of the EEG relative gamma and self-perceived stress surveys. The results that we obtained validate the effectiveness of our 360-degree proposal to significantly reduce stress (p-value = 0.0001). Furthermore, the participants deemed our proposal comfortable and immersive (score above 3.5 out of 5). These results suggest that 360-degree VR experiences can mitigate stress, reduce costs, and bring stress relief assistance closer to the general public, like in workplaces or homes.
Collapse
Affiliation(s)
- Miguel A. Vaquero-Blasco
- Department of Signal Theory, Telematics and Communications, University of Granada, Calle Periodista Daniel Saucedo Aranda, s/n, 18014 Granada, Spain;
- Research Centre for Information and Communications Technologies (CITIC), University of Granada, Calle Periodista Rafael Gómez Montero, 2, 18014 Granada, Spain; (E.P.-V.); (C.M.)
| | - Eduardo Perez-Valero
- Research Centre for Information and Communications Technologies (CITIC), University of Granada, Calle Periodista Rafael Gómez Montero, 2, 18014 Granada, Spain; (E.P.-V.); (C.M.)
- Department of Computer Architecture and Technology, University of Granada, Calle Periodista Daniel Saucedo Aranda, s/n, 18014 Granada, Spain
| | - Christian Morillas
- Research Centre for Information and Communications Technologies (CITIC), University of Granada, Calle Periodista Rafael Gómez Montero, 2, 18014 Granada, Spain; (E.P.-V.); (C.M.)
- Department of Computer Architecture and Technology, University of Granada, Calle Periodista Daniel Saucedo Aranda, s/n, 18014 Granada, Spain
| | - Miguel A. Lopez-Gordo
- Department of Signal Theory, Telematics and Communications, University of Granada, Calle Periodista Daniel Saucedo Aranda, s/n, 18014 Granada, Spain;
- Research Centre for Information and Communications Technologies (CITIC), University of Granada, Calle Periodista Rafael Gómez Montero, 2, 18014 Granada, Spain; (E.P.-V.); (C.M.)
- Correspondence: ; Tel.: +34-958-249-721
| |
Collapse
|
10
|
Jeunet C, Hauw D, Millán JDR. Sport Psychology: Technologies Ahead. Front Sports Act Living 2020; 2:10. [PMID: 33345005 PMCID: PMC7739689 DOI: 10.3389/fspor.2020.00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Camille Jeunet
- CLLE Lab, CNRS, Univ. Toulouse Jean Jaurès, Toulouse, France.,École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Denis Hauw
- Institut des Sciences du Sport, Université de Lausanne, Lausanne, Switzerland
| | - Jose Del R Millán
- École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States.,Department of Neurology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|