1
|
Ren Y, Shen F, Liu J, Liang W, Zhang C, Lian T, Jiang L. Application of Methionine Increases the Germination Rate of Maize Seeds by Triggering Multiple Phenylpropanoid Biosynthetic Genes at Transcript Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:3802. [PMID: 38005700 PMCID: PMC10675280 DOI: 10.3390/plants12223802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Methionine is an essential amino acid that initiates protein synthesis and serves as a substrate for various chemical reactions. Methionine metabolism plays an important role in Arabidopsis seed germination, but how methionine works in seed germination of maize has not been elucidated. We compared the changes in germination rate, the contents of methionine and folates, and transcriptional levels using transcriptome analysis under water or exogenous methionine treatment. The results indicate that the application of methionine increases seed germination rate (95% versus 70%), leading to significant differences in the content of methionine at 36 h, which brought the rapid increase forward by 12 h in the embryo and endosperm. Transcriptome analysis shows that methionine mainly affects the proliferation and differentiation of cells in the embryo, and the degradation of storage substances and signal transduction in the endosperm. In particular, multiple phenylpropanoid biosynthetic genes were triggered upon methionine treatment during germination. These results provide a theoretical foundation for promoting maize seed germination and serve as a valuable theoretical resource for seed priming strategies.
Collapse
Affiliation(s)
- Ying Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Fengyuan Shen
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Ji’an Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Wenguang Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| |
Collapse
|
2
|
Fu J, Pei W, He L, Ma B, Tang C, Zhu L, Wang L, Zhong Y, Chen G, Wang Q, Wang Q. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize. PLoS Genet 2023; 19:e1011052. [PMID: 37976306 PMCID: PMC10691696 DOI: 10.1371/journal.pgen.1011052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
Rapid and uniform seed germination is required for modern cropping system. Thus, it is important to optimize germination performance through breeding strategies in maize, in which identification for key regulators is needed. Here, we characterized an AP2/ERF transcription factor, ZmEREB92, as a negative regulator of seed germination in maize. Enhanced germination in ereb92 mutants is contributed by elevated ethylene signaling and starch degradation. Consistently, an ethylene signaling gene ZmEIL7 and an α-amylase gene ZmAMYa2 are identified as direct targets repressed by ZmEREB92. OsERF74, the rice ortholog of ZmEREB92, shows conserved function in negatively regulating seed germination in rice. Importantly, this orthologous gene pair is likely experienced convergently selection during maize and rice domestication. Besides, mutation of ZmEREB92 and OsERF74 both lead to enhanced germination under cold condition, suggesting their regulation on seed germination might be coupled with temperature sensitivity. Collectively, our findings uncovered the ZmEREB92-mediated regulatory mechanism of seed germination in maize and provide breeding targets for maize and rice to optimize seed germination performance towards changing climates.
Collapse
Affiliation(s)
- Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wenzheng Pei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Linqian He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ben Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Eljebbawi A, Savelli B, Libourel C, Estevez JM, Dunand C. Class III Peroxidases in Response to Multiple Abiotic Stresses in Arabidopsis thaliana Pyrenean Populations. Int J Mol Sci 2022; 23:ijms23073960. [PMID: 35409333 PMCID: PMC8999671 DOI: 10.3390/ijms23073960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Class III peroxidases constitute a plant-specific multigene family, where 73 genes have been identified in Arabidopsis thaliana. These genes are members of the reactive oxygen species (ROS) regulatory network in the whole plant, but more importantly, at the root level. In response to abiotic stresses such as cold, heat, and salinity, their expression is significantly modified. To learn more about their transcriptional regulation, an integrative phenotypic, genomic, and transcriptomic study was executed on the roots of A. thaliana Pyrenean populations. Initially, the root phenotyping highlighted 3 Pyrenean populations to be tolerant to cold (Eaux), heat (Herr), and salt (Grip) stresses. Then, the RNA-seq analyses on these three populations, in addition to Col-0, displayed variations in CIII Prxs expression under stressful treatments and between different genotypes. Consequently, several CIII Prxs were particularly upregulated in the tolerant populations, suggesting novel and specific roles of these genes in plant tolerance against abiotic stresses.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
| | - Bruno Savelli
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina;
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago CP 8370146, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio) Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago CP 8370146, Chile
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP, 31326 Toulouse, France; (A.E.); (B.S.); (C.L.)
- Correspondence:
| |
Collapse
|