1
|
Akın D, Kahraman Çeti N N, Erdoğdu İH, Öztürk H, Meteoğlu İ. Clinicopathological significance of mutation profile detected by next generation sequencing in different metastatic organs of non-small cell lung cancers. Pathol Res Pract 2024; 260:155463. [PMID: 39013258 DOI: 10.1016/j.prp.2024.155463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The primary tumor and it's metastases show heterogeneity in molecular studies for targeted therapies in Non-Small Cell Lung Cancer(NSCLC), the leading cause of cancer-related deaths worldwide. The study aimed to identify somatic mutations in biopsies from NSCLC patients' metastatic organs using Next-Generation Sequencing(NGS) and examine their association with clinicopathological parameters. MATERIALS AND METHODS The study included 128 NSCLC patients and, NGS was performed on tumor biopsies from different metastatic organs at Molecular Pathology laboratory of the Department of Medical Pathology in Aydın Adnan Menderes University Faculty of Medicine. The age, gender, histopathological diagnoses, metastatic organs, smoking and mutation status were all recorded, along with the analysis results of 72 genes and 4149 primers in the panel of the NGS system. RESULTS 53.9 % of the cases had a history of smoking and patients with brain metastases had a higher smoking rate(p=0.000). The most common occurrence(39.8 %) was lymph node metastasis, followed by brain(19.5 %). There was a strong correlation between mutation presence and metastasis in the liver(p=0.012), bone(p=0.002), and pleura(p=0.008). Smokers had a higher frequency of KRAS(p=0.000) and TP53(p=0.001) mutations. Brain metastases showed a statistically significant NF1 mutation(p=0.001), while the liver exhibited a significant BRAF mutation(p=0.000). NF1-TP53, PTEN-TP53 and NF1-PTEN were the most common concomitant mutations and, the brain was the most common metastatic organ in which they occurred. CONCLUSION Our results suggest prizing assessing detected mutations, in the prediction, follow-up and management of metastases, especially in patients with lung adenocarcinoma. The assessment also needs to consider the tumor's mutation status in metastatic organs. New therapeutic agents targeting NF1 mutations will be available in the future to treat NSCLC, especially in metastases.
Collapse
Affiliation(s)
- Dilara Akın
- Department of Pathology, Aydın Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - Nesibe Kahraman Çeti N
- Department of Pathology, Aydın Adnan Menderes University Faculty of Medicine, Aydın, Turkey.
| | - İbrahim Halil Erdoğdu
- Department of Pathology, Aydın Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - Hakan Öztürk
- Department of Biostatistics, Aydın Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - İbrahim Meteoğlu
- Department of Pathology, Aydın Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| |
Collapse
|
2
|
Cheng B, Xu L, Zhang Y, Yang H, Liu S, Ding S, Zhao H, Sui Y, Wang C, Quan L, Liu J, Liu Y, Wang H, Zheng Z, Wu X, Guo J, Wen Z, Zhang R, Wang F, Liu H, Sun S. Correlation between NGS panel-based mutation results and clinical information in colorectal cancer patients. Heliyon 2024; 10:e29299. [PMID: 38623252 PMCID: PMC11016705 DOI: 10.1016/j.heliyon.2024.e29299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Early mutation identification guides patients with colorectal cancer (CRC) toward targeted therapies. In the present study, 414 patients with CRC were enrolled, and amplicon-based targeted next-generation sequencing (NGS) was then performed to detect genomic alterations within the 73 cancer-related genes in the OncoAim panel. The overall mutation rate was 91.5 % (379/414). Gene mutations were detected in 38/73 genes tested. The most frequently mutated genes were TP53 (60.9 %), KRAS (46.6 %), APC (30.4 %), PIK3CA (15.9 %), FBXW7 (8.2 %), SMAD4 (6.8 %), BRAF (6.5 %), and NRAS (3.9 %). Compared with the wild type, TP53 mutations were associated with low microsatellite instability/microsatellite stability (MSI-L/MSS) (P = 0.007), tumor location (P = 0.043), and histological grade (P = 0.0009); KRAS mutations were associated with female gender (P = 0.026), distant metastasis (P = 0.023), TNM stage (P = 0.013), and histological grade (P = 0.004); APC mutations were associated with patients <64 years of age at diagnosis (P = 0.04); PIK3CA mutations were associated with tumor location (P = 4.97e-06) and female gender (P = 0.018); SMAD4 mutations were associated with tumor location (P = 0.033); BRAF mutations were associated with high MSI (MSI-H; P = 6.968e-07), tumor location (P = 1.58e-06), and histological grade (P = 0.04). Mutations in 164 individuals were found to be pathogenic or likely pathogenic. A total of 26 patients harbored MSI-H tumors and they all had at least one detected gene mutation. Mutated genes were enriched in signaling pathways associated with CRC. The present findings have important implications for improving the personalized treatment of patients with CRC in China.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Lin Xu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Yunzhi Zhang
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huimin Yang
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Shan Liu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Shanshan Ding
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Huan Zhao
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Yi Sui
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Chan Wang
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Lanju Quan
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Jinhong Liu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Ye Liu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Hongming Wang
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Zhaoqing Zheng
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Xizhao Wu
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Jing Guo
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Zhaohong Wen
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Ruya Zhang
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Fei Wang
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| | - Hongmei Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai 201318, China
| | - Suozhu Sun
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing 100037, China
| |
Collapse
|
3
|
Zhang B, Dong S, Wang J, Huang T, Zhao P, Xu J, Liu D, Fu L, Wang L, Wang G, Zou C. NOTCH4 ΔL12_16 sensitizes lung adenocarcinomas to EGFR-TKIs through transcriptional down-regulation of HES1. Nat Commun 2023; 14:3183. [PMID: 37268635 DOI: 10.1038/s41467-023-38833-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Resistance to epidermal growth factor tyrosine kinase inhibitors (EGFR-TKI) remains one of the major challenges in lung adenocarcinoma (LUAD) therapy. Here, we find an increased frequency of the L12_16 amino acid deletion mutation in the signal peptide region of NOTCH4 (NOTCH4ΔL12_16) in EGFR-TKI-sensitive patients. Functionally, exogenous induction of NOTCH4ΔL12_16 in EGFR-TKI -resistant LUAD cells sensitizes them to EGFR-TKIs. This process is mainly mediated by the reduction of the intracellular domain of NOTCH4 (NICD4) caused by the NOTCH4ΔL12_16 mutation, which results in a lower localization of NOTCH4 in the plasma membrane. Mechanistically, NICD4 transcriptionally upregulates the expression of HES1 by competitively binding to the gene promoter relative to p-STAT3. Because p-STAT3 can downregulate the expression of HES1 in EGFR-TKI-resistant LUAD cells, the reduction of NICD4 induced by NOTCH4ΔL12_16 mutation leads to a decrease in HES1. Moreover, inhibition of the NOTCH4-HES1 pathway using inhibitors and siRNAs abolishes the resistance of EGFR-TKI. Overall, we report that the NOTCH4ΔL12_16 mutation sensitizes LUAD patients to EGFR-TKIs through transcriptional down-regulation of HES1 and that targeted blockade of this signaling cohort could reverse EGFR-TKI -resistance in LUAD, providing a potential approach to overcome resistance to EGFR-TKI -therapy.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Tuxiong Huang
- Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Pan Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jing Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Dongcheng Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Li Fu
- Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Lingwei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Guangsuo Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Chang Zou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, PR China.
| |
Collapse
|
4
|
Zhao J, Wu Y, Chen MJ, Xu Y, Zhong W, Wang MZ. Characterization of driver mutations in Chinese non-small cell lung cancer patients using a novel targeted sequencing panel. J Thorac Dis 2022; 14:4669-4684. [PMID: 36647494 PMCID: PMC9840037 DOI: 10.21037/jtd-22-909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022]
Abstract
Background The identification of driver mutations has greatly promoted the precise diagnosis and treatment of non-small cell lung cancer (NSCLC), but there is lack of targeted sequencing panels specifically designed and applied to Chinese NSCLC patients. This study aimed to design and validate of a novel sequencing panel for comprehensive characterization of driver mutations in Chinese NSCLC patients, facilitating further exploration of downstream pathway alterations and therapeutic utility. Methods A novel target sequencing panel including 21 driver genes was designed and examined in a cohort of 260 Chinese NSCLC patients who underwent surgery in Peking Union Medical College Hospital (PUMCH). Genetic alterations were identified and further analyzed for driver mutations, downstream pathways and therapeutic utilities. Results The most frequently identified driver mutations in PUMCH NSCLC cohort were on genes TP53 (28%), EGFR (27%) and PIK3CA (19%) for lung adenocarcinoma (LUAD), and TP53 (41%), PIK3CA (14%) and CDKN2A (13%) for lung squamous cell carcinoma (LUSC), respectively. Downstream pathway analysis revealed common pathways like G1_AND_S1_PHASES pathway were shared not only between LUAD and LUSC patients, but also among three different NSCLC cohorts, while other pathways were subtype-specific, like the unique enrichment of SHC1_EVENT_IN_EGFR_SIGNALING pathway in LUAD patients, and P38_ALPHA_BETA_DOWNSTREAM pathway in LUSC patients, respectively. About 60% of both LUAD and LUSC patients harbored driver mutations as sensitive biomarkers for different targeted therapies, covering not only frequent mutations like EGFR L858R mutation, but also rare mutations like BRAF D594N mutation. Conclusions Our study provides a novel target sequencing panel suitable for Chinese NSCLC patients, which can effectively identify driver mutations, analyze downstream pathway alterations and predict therapeutic utility. Overall it is promising to further optimize and apply this panel in clinic with convenience and effectiveness.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yang Wu
- School of Medicine, Tsinghua University, Beijing, China
| | - Min-Jiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Meng-Zhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
5
|
Xu F, Cui W, Liu C, Feng F, Liu R, Zhang J, Sun C. Prognostic biomarkers correlated with immune infiltration in non-small cell lung cancer. FEBS Open Bio 2022; 13:72-88. [PMID: 36282125 PMCID: PMC9811604 DOI: 10.1002/2211-5463.13501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 01/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in men and women globally. Non-small cell lung cancer (NSCLC) is the most prevalent subtype, accounting for 85-90% of all cancers. Although there have been dramatic advances in therapeutic approaches in recent decades, the recurrence and metastasis rates of NSCLC are as high as 30-40% with the 5-year overall survival rate being less than 15%. Therefore, it is necessary to explore the pathogenesis of NSCLC at the genetic level and identify prognostic biomarkers and novel therapeutic targets. Here, we aimed to identify mutated genes with high frequencies in Chinese NSCLC patients using next-generation sequencing and to investigate their relationships with the tumor mutation burden (TMB) and tumor immune microenvironment. A total of 110 NSCLC patients were enrolled to profile the genetic variations. Mutations in EGFR (62.37%), TP53 (61.29%), LRP1B (13.98%), FAT1 (12.90%), KMT2D (11.83%), CREBBP (10.75%), and RB1 (9.68%) were most prevalent. TP53, LRP1B, KMT2D, and CREBBP mutations were all significantly associated with high TMB (P < 0.05 or P < 0.01). The infiltrating levels of immune cells and immune molecules were enriched significantly in the LRP1B mutation group. LRP1B mutations significantly correlated with stimulating and inhibitory immunoregulators. Gene set enrichment analysis revealed that cell cycle, the Notch signaling pathway, the insulin signaling pathway, and the mTOR signaling pathway are related to LRP1B mutations in the immune system. LRP1B mutations may be of clinical importance in enhancing the anti-tumor immune response and may be a promising biomarker for predicting immunotherapy responsiveness.
Collapse
Affiliation(s)
- Fei Xu
- Department of Geriatric MedicineAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina,First Clinical Medical CollegeShandong University of Traditional Chinese MedicineJinanChina
| | - Wen‐qiang Cui
- Department of NeurologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Cun Liu
- College of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Fubin Feng
- Department of OncologyWeifang Traditional Chinese HospitalChina
| | - Ruijuan Liu
- Department of OncologyWeifang Traditional Chinese HospitalChina
| | - Jingtao Zhang
- College of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Chang‐gang Sun
- Department of OncologyWeifang Traditional Chinese HospitalChina,Qingdao Academy of Chinese Medical SciencesShandong University of Traditional Chinese MedicineQingdaoChina
| |
Collapse
|
6
|
An Integrated Study on the Differential Expression of the FOX Gene Family in Cancer and Their Response to Chemotherapy Drugs. Genes (Basel) 2022; 13:genes13101754. [PMID: 36292640 PMCID: PMC9602029 DOI: 10.3390/genes13101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The Forkhead-box (FOX) transcription factors, as one of the largest gene families in humans, play key roles in cancer. Although studies have suggested that several FOX transcription factors have a significant impact on cancer, the functions of most of the FOX genes in cancer remain elusive. In the study, the expression of 43 FOX genes in 63 kinds of cancer diseases (including many subtypes of same cancer) and in response to 60 chemical substances was obtained from the Gene Expression Atlas database of the European Bioinformatics Institute. Based on the high degree of overlap in FOXO family members differentially expressed in various cancers and their particular responses to chemotherapeutic drugs, our data disclosed the FOX genes that played an important role in the development and progression of cancer. More importantly, we predicted the role of one or several combinatorial FOX genes in the diagnosis and prognostic assessment of a specific cancer and evaluated the potential of a certain anticancer drug therapy for this type of cancer by integrating patterns of FOX genes expression with anticancer drugs sensitivity.
Collapse
|
7
|
Jin Y, Chen Z, Chen Q, Sha L, Shen C. [Role and Significance of Bioactive Substances in Sputum
in the Diagnosis of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:867-873. [PMID: 34923805 PMCID: PMC8695240 DOI: 10.3779/j.issn.1009-3419.2021.102.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
肺癌是我国目前发病率最高的恶性肿瘤之一,其诊断的金标准需要进行组织活检的病理学检查或脱落细胞学检查,二者的有创性和敏感性限制了他们的使用。痰液中含有大量核酸、蛋白质,是肺功能的良好反映物,肺癌组织也会影响痰液中的生物成分,检测其中的生物活性物质可有助于肺癌的诊断。本文综合目前国内外的研究结果,对痰液中可用于肺癌诊断的生物活性物质做一综述。
Collapse
Affiliation(s)
- Yuming Jin
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zixuan Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Quan Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Leihao Sha
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Cheng Shen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
MET Amplification in Non-Small Cell Lung Cancer (NSCLC)-A Consecutive Evaluation Using Next-Generation Sequencing (NGS) in a Real-World Setting. Cancers (Basel) 2021; 13:cancers13195023. [PMID: 34638507 PMCID: PMC8508248 DOI: 10.3390/cancers13195023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lung cancer has a high incidence and affects both men and women. Targeted therapy options directed at certain mutant proteins, and which avoid systemic chemotherapy are already available and emerging. The gene mesenchymal epithelial transition (MET), encoding a receptor tyrosine kinase protein, is amplified in a subpopulation of lung cancer patients. The aim of our consecutive study was to assess whether next-generation sequencing (NGS) is a reliable method for the detection of MET gene copy number. Our study confirmed that NGS is able to detect cases harboring a high-level MET gene amplification but is unreliable and fails to detect the various levels of MET gene amplification. Therefore, NGS cannot replace the gold standard method of fluorescence in situ hybridization for the detection of MET gene copy number. Abstract In non-small cell lung cancer (NSCLC), approximately 1–3% of cases harbor an increased gene copy number (GCN) of the MET gene. This alteration can be due to de novo amplification of the MET gene or can represent a secondary resistance mechanism in response to targeted therapies. To date, the gold standard method to evaluate the GCN of MET is fluorescence in situ hybridization (FISH). However, next-generation sequencing (NGS) is becoming more relevant to optimize therapy by revealing the mutational profile of each NSCLC. Using evaluable n = 205 NSCLC cases of a consecutive cohort, this study addressed the question of whether an amplicon based NGS assay can completely replace the FISH method regarding the classification of MET GCN status. Out of the 205 evaluable cases, only n = 9 cases (43.7%) of n = 16 high-level MET amplified cases assessed by FISH were classified as amplified by NGS. Cases harboring a MET GCN > 10 showed the best concordance when comparing FISH versus NGS (80%). This study confirms that an amplicon-based NGS assessment of the MET GCN detects high-level MET amplified cases harboring a MET GCN > 10 but fails to detect the various facets of MET gene amplification in the context of a therapy-induced resistance mechanism.
Collapse
|
9
|
Rosigkeit S, Kruchem M, Thies D, Kreft A, Eichler E, Boegel S, Jansky S, Siegl D, Kaps L, Pickert G, Haehnel P, Kindler T, Hartwig UF, Guerra C, Barbacid M, Schuppan D, Bockamp E. Definitive evidence for Club cells as progenitors for mutant Kras/Trp53-deficient lung cancer. Int J Cancer 2021; 149:1670-1682. [PMID: 34331774 DOI: 10.1002/ijc.33756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022]
Abstract
Accumulating evidence suggests that both the nature of oncogenic lesions and the cell-of-origin can strongly influence cancer histopathology, tumor aggressiveness and response to therapy. Although oncogenic Kras expression and loss of Trp53 tumor suppressor gene function have been demonstrated to initiate murine lung adenocarcinomas (LUADs) in alveolar type II (AT2) cells, clear evidence that Club cells, representing the second major subset of lung epithelial cells, can also act as cells-of-origin for LUAD is lacking. Equally, the exact anatomic location of Club cells that are susceptible to Kras transformation and the resulting tumor histotype remains to be established. Here, we provide definitive evidence for Club cells as progenitors for LUAD. Using in vivo lineage tracing, we find that a subset of Kras12V -expressing and Trp53-deficient Club cells act as precursors for LUAD and we define the stepwise trajectory of Club cell-initiated tumors leading to lineage marker conversion and aggressive LUAD. Our results establish Club cells as cells-of-origin for LUAD and demonstrate that Club cell-initiated tumors have the potential to develop aggressive LUAD.
Collapse
Affiliation(s)
- Sebastian Rosigkeit
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Marie Kruchem
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Dorothe Thies
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Andreas Kreft
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Emma Eichler
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Sebastian Boegel
- Department of Internal Medicine, University Center of Autoimmunity, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Sandrine Jansky
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Siegl
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Leonard Kaps
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Geethanjali Pickert
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Patricia Haehnel
- III. Department of Medicine Hematology, Internal Oncology and Pneumology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Kindler
- III. Department of Medicine Hematology, Internal Oncology and Pneumology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Udo F Hartwig
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.,III. Department of Medicine Hematology, Internal Oncology and Pneumology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Carmen Guerra
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Mariano Barbacid
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Detlef Schuppan
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ernesto Bockamp
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
10
|
Abstract
The gene expression program induced by NRF2 transcription factor plays a critical role in cell defense responses against a broad variety of cellular stresses, most importantly oxidative stress. NRF2 stability is fine-tuned regulated by KEAP1, which drives its degradation in the absence of oxidative stress. In the context of cancer, NRF2 cytoprotective functions were initially linked to anti-oncogenic properties. However, in the last few decades, growing evidence indicates that NRF2 acts as a tumor driver, inducing metastasis and resistance to chemotherapy. Constitutive activation of NRF2 has been found to be frequent in several tumors, including some lung cancer sub-types and it has been associated to the maintenance of a malignant cell phenotype. This apparently contradictory effect of the NRF2/KEAP1 signaling pathway in cancer (cell protection against cancer versus pro-tumoral properties) has generated a great controversy about its functions in this disease. In this review, we will describe the molecular mechanism regulating this signaling pathway in physiological conditions and summarize the most important findings related to the role of NRF2/KEAP1 in lung cancer. The focus will be placed on NRF2 activation mechanisms, the implication of those in lung cancer progression and current therapeutic strategies directed at blocking NRF2 action.
Collapse
|
11
|
Comprehensive genomic profile of Chinese lung cancer patients and mutation characteristics of individuals resistant to icotinib/gefitinib. Sci Rep 2020; 10:20243. [PMID: 33219256 PMCID: PMC7679461 DOI: 10.1038/s41598-020-76791-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the leading causes of cancer-related death worldwide. Precise treatment based on next-generation sequencing technology has shown advantages in the diagnosis and treatment of lung cancer. This cohort study included 371 lung cancer patients. The lung cancer subtype was related to the smoking status and sex of the patients. The most common mutated genes were TP53 (62%), EGFR (55%), and KRAS (11%). The mutation frequencies of EGFR, TP53, PIK3CA, NFE2L2, KMT2D, FGFR1, CCND1, and CDKN2A were significantly different between lung adenocarcinoma and lung squamous cell carcinoma. We identified the age-associated mutations in ALK, ERBB2, KMT2D, RBM10, NRAS, NF1, PIK3CA, MET, PBRM1, LRP2, and CDKN2B; smoking-associated mutations in CDKN2A, FAT1, FGFR1, NFE2L2, CCNE1, CCND1, SMARCA4, KEAP1, KMT2C, and STK11; tumor stage-associated mutations in ARFRP1, AURKA, and CBFB; and sex-associated mutations in EGFR. Tumor mutational burden (TMB) is associated with tumor subtype, age, sex, and smoking status. TMB-associated mutations included CDKN2A, LRP1B, LRP2, TP53, and EGFR. EGFR amplification was commonly detected in patients with acquired lcotinib/gefitinib resistance. DNMT3A and NOTCH4 mutations may be associated with the benefit of icotinib/gefitinib treatment.
Collapse
|