1
|
Gao Y, Hossain MN, Zhao L, Deavila JM, Law NC, Zhu MJ, Murdoch GK, Du M. Spatial Transcriptomics Analysis: Maternal Obesity Impairs Myogenic Cell Migration and Differentiation during Embryonic Limb Development. Int J Mol Sci 2024; 25:9488. [PMID: 39273445 PMCID: PMC11395138 DOI: 10.3390/ijms25179488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Limb muscle is responsible for physical activities and myogenic cell migration during embryogenesis is indispensable for limb muscle formation. Maternal obesity (MO) impairs prenatal skeletal muscle development, but the effects of MO on myogenic cell migration remain to be examined. C57BL/6 mice embryos were collected at E13.5. The GeoMx DSP platform was used to customize five regions along myogenic cell migration routes (myotome, dorsal/ventral limb, limb stroma, limb tip), and data were analyzed by GeomxTools 3.6.0. A total of 2224 genes were down-regulated in the MO group. The GO enrichment analysis showed that MO inhibited migration-related biological processes. The signaling pathways guiding myogenic migration such as hepatocyte growth factor signaling, fibroblast growth factor signaling, Wnt signaling and GTPase signaling were down-regulated in the MO E13.5 limb tip. Correspondingly, the expression levels of genes involved in myogenic cell migration, such as Pax3, Gab1, Pxn, Tln2 and Arpc, were decreased in the MO group, especially in the dorsal and ventral sides of the limb. Additionally, myogenic differentiation-related genes were down-regulated in the MO limb. MO impedes myogenic cell migration and differentiation in the embryonic limb, providing an explanation for the impairment of fetal muscle development and offspring muscle function due to MO.
Collapse
Affiliation(s)
- Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Md Nazmul Hossain
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Liang Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jeanene Marie Deavila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Nathan C. Law
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA;
| | - Gordon K. Murdoch
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| |
Collapse
|
2
|
Huang Y, Wang X, Lv Z, Hu X, Xu B, Yang H, Xiao T, Liu Q. Comparative Transcriptomics Analysis Reveals Unique Immune Response to Grass Carp Reovirus Infection in Barbel Chub ( Squaliobarbus curriculus). BIOLOGY 2024; 13:214. [PMID: 38666826 PMCID: PMC11047996 DOI: 10.3390/biology13040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) and barbel chub (Squaliobarbus curriculus)-both Leuciscinae subfamily species-demonstrate differences in grass carp reovirus (GCRV) infection resistance. We infected barbel chubs with type II GCRV and subjected their liver, spleen, head kidney, and trunk kidney samples to investigate anti-GCRV immune mechanisms via RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). We identified 139, 970, 867, and 2374 differentially expressed genes (DEGs) in the liver, spleen, head kidney, and trunk kidney, respectively. Across all four tissues, gene ontology analysis revealed significant immune response-related DEG enrichment, and the Kyoto Encyclopedia of Genes and Genomes analysis revealed pattern recognition receptor (PRR) and cytokine-related pathway enrichment. We noted autophagy pathway enrichment in the spleen, head kidney, and trunk kidney; apoptosis pathway enrichment in the spleen and trunk kidney; and complement- and coagulation-cascade pathway enrichment in only the spleen. Comparative transcriptome analysis between GCRV-infected barbel chubs and uninfected barbel chubs comprehensively revealed that PRR, cytokine-related, complement- and coagulation-cascade, apoptosis, and autophagy pathways are potential key factors influencing barbel chub resistance to GCRV infection. qRT-PCR validation of 11 immune-related DEGs confirmed our RNA-seq data's accuracy. These findings provide a theoretical foundation and empirical evidence for the understanding of GCRV infection resistance in barbel chub and hybrid grass carp-barbel chub breeding.
Collapse
Affiliation(s)
- Yuhong Huang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
| | - Xiaodong Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
| | - Zhao Lv
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Xudong Hu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Hong Yang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
3
|
Michael C, de Oliveira S. Exploring the dynamic behavior of leukocytes with zebrafish. Curr Opin Cell Biol 2023; 85:102276. [PMID: 37956533 PMCID: PMC10842401 DOI: 10.1016/j.ceb.2023.102276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Cell migration is a complex and intricate network of physical, chemical, and molecular events that ultimately leads to cell motility. This phenomenon is involved in both physiological and pathological processes such as proper immune and inflammatory responses. Dysregulation of cell migration machinery in immune cells can have a tremendous impact on the trajectory of inflammation, infection, and resolution. The small vertebrate, the zebrafish, has a remarkable capacity for genetic and pharmacological manipulation aligned to transparency that enables modulation and visualization of cell migration in vivo noninvasively. Such characteristics revolutionized the field of leukocyte biology, particularly neutrophils. In this review, we will focus on leukocyte migration and highlight findings made in the zebrafish that demonstrate how this small vertebrate system is a unique model to perform in vivo imaging and study mechanisms that regulate the dynamic behavior of immune cells in their native environment under homeostasis or upon challenge.
Collapse
Affiliation(s)
- Cassia Michael
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Montefiore-Einstein Comprehensive Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, USA.
| |
Collapse
|
4
|
Hornigold K, Baker MJ, Machin PA, Chetwynd SA, Johnsson AK, Pantarelli C, Islam P, Stammers M, Crossland L, Oxley D, Okkenhaug H, Walker S, Walker R, Segonds-Pichon A, Fukui Y, Malliri A, Welch HCE. The Rac-GEF Tiam1 controls integrin-dependent neutrophil responses. Front Immunol 2023; 14:1223653. [PMID: 38077328 PMCID: PMC10703174 DOI: 10.3389/fimmu.2023.1223653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Abstract
Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating β2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and β2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.
Collapse
Affiliation(s)
- Kirsti Hornigold
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Martin J. Baker
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | - Polly A. Machin
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | - Priota Islam
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | - David Oxley
- Mass Spectrometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge, United Kingdom
| | - Rachael Walker
- Flow Cytometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | | |
Collapse
|
5
|
Conley HE, Sheats MK. Targeting Neutrophil β 2-Integrins: A Review of Relevant Resources, Tools, and Methods. Biomolecules 2023; 13:892. [PMID: 37371473 DOI: 10.3390/biom13060892] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophils are important innate immune cells that respond during inflammation and infection. These migratory cells utilize β2-integrin cell surface receptors to move out of the vasculature into inflamed tissues and to perform various anti-inflammatory responses. Although critical for fighting off infection, neutrophil responses can also become dysregulated and contribute to disease pathophysiology. In order to limit neutrophil-mediated damage, investigators have focused on β2-integrins as potential therapeutic targets, but so far these strategies have failed in clinical trials. As the field continues to move forward, a better understanding of β2-integrin function and signaling will aid the design of future therapeutics. Here, we provide a detailed review of resources, tools, experimental methods, and in vivo models that have been and will continue to be utilized to investigate the vitally important cell surface receptors, neutrophil β2-integrins.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
6
|
Cao B, Zhao Y, Luo Q, Chen Y, Xu T, Sun Y. Vinculin B inhibits NF-κB signaling pathway by targeting MyD88 in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108683. [PMID: 36931481 DOI: 10.1016/j.fsi.2023.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is the canonical adaptor for inflammatory signaling pathways downstream from members of the Toll-like receptor (TLR) and interleukin-1 (IL-1) receptor families, which activates the NF-κB signaling pathway and regulates immune and inflammatory responses. In this study, we found that Vinculin B (Vclb) is an inhibitor in the NF-κB signaling pathway, and its inhibitory effect was enhanced by LPS induction. Furthermore, Vclb inhibits NF-κB activation by targeting MyD88, thereby suppressing the production of inflammatory cytokines. Mechanistically, Vclb inhibits the NF-κB signaling pathway by targeting MyD88 ubiquitin-proteasome pathway. In summary, our study reveals that Vclb inhibits NF-κB signaling activation and mediates innate immunity in teleosts via the ubiquitin-proteasome pathway of MyD88.
Collapse
Affiliation(s)
- Baolan Cao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yan Zhao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
7
|
Vergouwen DPC, Ten Berge JC, Guzel C, van den Bosch TPP, Verdijk RM, Rothova A, Luider TM, Schreurs MWJ. Scleral Proteome in Noninfectious Scleritis Unravels Upregulation of Filaggrin-2 and Signs of Neovascularization. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 36930145 PMCID: PMC10036950 DOI: 10.1167/iovs.64.3.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Purpose Scleritis is a severe inflammatory ocular disorder with unknown pathogenesis. We investigated healthy sclera as well as sclera affected by noninfectious scleritis for differentially expressed proteins using a mass spectrometry approach. Methods We collected scleral samples of enucleated eyes due to severe noninfectious scleritis (n = 3), and control scleral tissues (n = 5), all exenterated eyes for eyelid carcinomas (n = 4), or choroidal melanoma (n = 1) without scleral invasion. Samples were prepared for the nano liquid-chromatography mass spectrometer (LC-MS), data were analyzed using proteomics software (Scaffold), and is available via ProteomeXchange (identifier PXD038727). Samples were also stained for immuno-histopathological evaluation. Results Mass spectrometry identified 629 proteins within the healthy and diseased scleral tissues, whereof collagen type XII, VI, and I were the most abundantly expressed protein. Collagen type II-XII was also present. Filaggrin-2, a protein that plays a crucial role in epidermal barrier function, was found upregulated in all scleritis cases. In addition, other epithelial associated proteins were upregulated (such as keratin 33b, 34, and 85, epiplakin, transglutaminase-3, galectin 7, and caspase-14) in scleritis. Further, upregulated proteins involved in regulation of the cytoskeleton (vinculin and myosin 9), and housekeeping proteins were found (elongation factor-2 and cytoplasmic dynein 1) in our study. Upregulation of filaggrin-2 and myosin-9 was confirmed with immunohistochemistry, the latter protein showing co-localization with the endothelial cell marker ETC-related gene (ERG), indicating neovascularization in scleral tissue affected by scleritis. Conclusions We found upregulation of filaggrin-2 and signs of neovascularization in scleral tissue of patients with noninfectious scleritis. Further research, ideally including more scleritis cases, is needed to validate our findings.
Collapse
Affiliation(s)
- Daphne P C Vergouwen
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Josianne C Ten Berge
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Coskun Guzel
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aniki Rothova
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco W J Schreurs
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Taylor S, Isobe S, Cao A, Contrepois K, Benayoun BA, Jiang L, Wang L, Melemenidis S, Ozen MO, Otsuki S, Shinohara T, Sweatt AJ, Kaplan J, Moonen JR, Marciano DP, Gu M, Miyagawa K, Hayes B, Sierra RG, Kupitz CJ, Del Rosario PA, Hsi A, Thompson AAR, Ariza ME, Demirci U, Zamanian RT, Haddad F, Nicolls MR, Snyder MP, Rabinovitch M. Endogenous Retroviral Elements Generate Pathologic Neutrophils in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2022; 206:1019-1034. [PMID: 35696338 PMCID: PMC9801997 DOI: 10.1164/rccm.202102-0446oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rationale: The role of neutrophils and their extracellular vesicles (EVs) in the pathogenesis of pulmonary arterial hypertension is unclear. Objectives: To relate functional abnormalities in pulmonary arterial hypertension neutrophils and their EVs to mechanisms uncovered by proteomic and transcriptomic profiling. Methods: Production of elastase, release of extracellular traps, adhesion, and migration were assessed in neutrophils from patients with pulmonary arterial hypertension and control subjects. Proteomic analyses were applied to explain functional perturbations, and transcriptomic data were used to find underlying mechanisms. CD66b-specific neutrophil EVs were isolated from plasma of patients with pulmonary arterial hypertension, and we determined whether they produce pulmonary hypertension in mice. Measurements and Main Results: Neutrophils from patients with pulmonary arterial hypertension produce and release increased neutrophil elastase, associated with enhanced extracellular traps. They exhibit reduced migration and increased adhesion attributed to elevated β1-integrin and vinculin identified by proteomic analysis and previously linked to an antiviral response. This was substantiated by a transcriptomic IFN signature that we related to an increase in human endogenous retrovirus K envelope protein. Transfection of human endogenous retrovirus K envelope in a neutrophil cell line (HL-60) increases neutrophil elastase and IFN genes, whereas vinculin is increased by human endogenous retrovirus K deoxyuridine triphosphate diphosphatase that is elevated in patient plasma. Neutrophil EVs from patient plasma contain increased neutrophil elastase and human endogenous retrovirus K envelope and induce pulmonary hypertension in mice, mitigated by elafin, an elastase inhibitor. Conclusions: Elevated human endogenous retroviral elements and elastase link a neutrophil innate immune response to pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Shalina Taylor
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Sarasa Isobe
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Aiqin Cao
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | | | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology and,Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Lihua Jiang
- Stanford Cardiovascular Institute,,Department of Genetics
| | - Lingli Wang
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | | | - Mehmet O. Ozen
- Department of Radiology Canary Center for Cancer Early Detection
| | - Shoichiro Otsuki
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Tsutomu Shinohara
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Andrew J. Sweatt
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Department of Medicine – Pulmonary and Critical Care Medicine, and
| | - Jordan Kaplan
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Jan-Renier Moonen
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | | | - Mingxia Gu
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Kazuya Miyagawa
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Christopher J. Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Patricia A. Del Rosario
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Department of Medicine – Pulmonary and Critical Care Medicine, and
| | - Andrew Hsi
- Vera Moulton Wall Center for Pulmonary Vascular Diseases
| | - A. A. Roger Thompson
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology,,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom; and
| | - Maria E. Ariza
- Department of Cancer Biology and Genetics and,Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Roham T. Zamanian
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Department of Medicine – Pulmonary and Critical Care Medicine, and
| | - Francois Haddad
- Stanford Cardiovascular Institute,,Department of Medicine – Cardiovascular Medicine, Stanford University, Stanford, California
| | - Mark R. Nicolls
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Medicine – Pulmonary and Critical Care Medicine, and
| | | | - Marlene Rabinovitch
- Vera Moulton Wall Center for Pulmonary Vascular Diseases,,Stanford Cardiovascular Institute,,Department of Pediatrics – Cardiology
| |
Collapse
|
9
|
Torres-Gomez A, Fiyouzi T, Guerra-Espinosa C, Cardeñes B, Clares I, Toribio V, Reche PA, Cabañas C, Lafuente EM. Expression of the phagocytic receptors αMβ2 and αXβ2 is controlled by RIAM, VASP and Vinculin in neutrophil-differentiated HL-60 cells. Front Immunol 2022; 13:951280. [PMID: 36238292 PMCID: PMC9552961 DOI: 10.3389/fimmu.2022.951280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Activation of the integrin phagocytic receptors CR3 (αMβ2, CD11b/CD18) and CR4 (αXβ2, CD11c/CD18) requires Rap1 activation and RIAM function. RIAM controls integrin activation by recruiting Talin to β2 subunits, enabling the Talin-Vinculin interaction, which in term bridges integrins to the actin-cytoskeleton. RIAM also recruits VASP to phagocytic cups and facilitates VASP phosphorylation and function promoting particle internalization. Using a CRISPR-Cas9 knockout approach, we have analyzed the requirement for RIAM, VASP and Vinculin expression in neutrophilic-HL-60 cells. All knockout cells displayed abolished phagocytosis that was accompanied by a significant and specific reduction in ITGAM (αM), ITGAX (αX) and ITGB2 (β2) mRNA, as revealed by RT-qPCR. RIAM, VASP and Vinculin KOs presented reduced cellular F-actin content that correlated with αM expression, as treatment with the actin filament polymerizing and stabilizing drug jasplakinolide, partially restored αM expression. In general, the expression of αX was less responsive to jasplakinolide treatment than αM, indicating that regulatory mechanisms independent of F-actin content may be involved. The Serum Response Factor (SRF) was investigated as the potential transcription factor controlling αMβ2 expression, since its coactivator MRTF-A requires actin polymerization to induce transcription. Immunofluorescent MRTF-A localization in parental cells was primarily nuclear, while in knockouts it exhibited a diffuse cytoplasmic pattern. Localization of FHL-2 (SRF corepressor) was mainly sub-membranous in parental HL-60 cells, but in knockouts the localization was disperse in the cytoplasm and the nucleus, suggesting RIAM, VASP and Vinculin are required to maintain FHL-2 close to cytoplasmic membranes, reducing its nuclear localization and inhibiting its corepressor activity. Finally, reexpression of VASP in the VASP knockout resulted in a complete reversion of the phenotype, as knock-ins restored αM expression. Taken together, our results suggest that RIAM, VASP and Vinculin, are necessary for the correct expression of αMβ2 and αXβ2 during neutrophilic differentiation in the human promyelocytic HL-60 cell line, and strongly point to an involvement of these proteins in the acquisition of a phagocytic phenotype.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- *Correspondence: Esther M. Lafuente, ; Alvaro Torres-Gomez,
| | - Tara Fiyouzi
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Claudia Guerra-Espinosa
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Cardeñes
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Irene Clares
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Víctor Toribio
- Tissue and Organ Homeostasis Program (Cell-Cell Communication and Inflammation Unit), Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pedro A. Reche
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- Tissue and Organ Homeostasis Program (Cell-Cell Communication and Inflammation Unit), Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Esther M. Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Inflammatory Diseases and Immune Disorders (Lymphocyte Immunobiology Unit), Madrid, Spain
- *Correspondence: Esther M. Lafuente, ; Alvaro Torres-Gomez,
| |
Collapse
|
10
|
HS1 deficiency protects against sepsis by attenuating neutrophil-inflicted lung damage. Eur J Cell Biol 2022; 101:151214. [PMID: 35286924 PMCID: PMC10170315 DOI: 10.1016/j.ejcb.2022.151214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Sepsis remains an important health problem worldwide due to inefficient treatments often resulting in multi-organ failure. Neutrophil recruitment is critical during sepsis. While neutrophils are required to combat invading bacteria, excessive neutrophil recruitment contributes to tissue damage due to their arsenal of molecular weapons that do not distinguish between host and pathogen. Thus, neutrophil recruitment needs to be fine-tuned to ensure bacterial killing, while avoiding neutrophil-inflicted tissue damage. We recently showed that the actin-binding protein HS1 promotes neutrophil extravasation; and hypothesized that HS1 is also a critical regulator of sepsis progression. We evaluated the role of HS1 in a model of lethal sepsis induced by cecal-ligation and puncture. We found that septic HS1-deficient mice had a better survival rate compared to WT mice due to absence of lung damage. Lungs of septic HS1-deficient mice showed less inflammation, fibrosis, and vascular congestion. Importantly, systemic CLP-induced neutrophil recruitment was attenuated in the lungs, the peritoneum and the cremaster in the absence of HS1. Lungs of HS1-deficient mice produced significantly more interleukin-10. Compared to WT neutrophils, those HS1-deficient neutrophils that reached the lungs had increased surface levels of Gr-1, ICAM-1, and L-selectin. Interestingly, HS1-deficient neutrophils had similar F-actin content and phagocytic activity, but they failed to polymerize actin and deform in response to CXCL-1 likely explaining the reduced systemic neutrophil recruitment in HS1-deficient mice. Our data show that HS1 deficiency protects against sepsis by attenuating neutrophil recruitment to amounts sufficient to combat bacterial infection, but insufficient to induce tissue damage.
Collapse
|
11
|
Berglund-Brown I, Nissen E, Koestler DC, Butler RA, Eliot MN, Padbury JF, Salas LA, Molinaro AM, Christensen BC, Wiencke JK, Kelsey KT. A core of differentially methylated CpG loci in gMDSCs isolated from neonatal and adult sources. Clin Epigenetics 2022; 14:27. [PMID: 35189960 PMCID: PMC8862379 DOI: 10.1186/s13148-022-01247-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs), which include monocytic (mMDSCs) and granulocytic (gMDSCs) cells, are an immunosuppressive, heterogeneous population of cells upregulated in cancer and other pathologic conditions, in addition to normal conditions of stress. The origin of MDSCs is debated, and the regulatory pattern responsible for gMDSC differentiation remains unknown. Since DNA methylation (DNAm) contributes to lineage differentiation, we have investigated whether it contributes to the acquisition of the gMDSC phenotype. RESULTS Using the Illumina EPIC array to measure DNAm of gMDSCs and neutrophils from diverse neonatal and adult blood sources, we found 189 differentially methylated CpGs between gMDSCs and neutrophils with a core of ten differentially methylated CpGs that were consistent across both sources of cells. Genes associated with these loci that are involved in immune responses include VCL, FATS, YAP1, KREMEN2, UBTF, MCC-1, and EFCC1. In two cancer patient groups that reflected those used to develop the methylation markers (head and neck squamous cell carcinoma (HNSCC) and glioma), all of the CpG loci were differentially methylated, reaching statistical significance in glioma cases and controls, while one was significantly different in the smaller HNSCC group. CONCLUSIONS Our findings indicate that gMDSCs have a core of distinct DNAm alterations, informing future research on gMDSC differentiation and function.
Collapse
Affiliation(s)
| | - Emily Nissen
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rondi A Butler
- Departments of Epidemiology, and Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - Melissa N Eliot
- Departments of Epidemiology, and Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - James F Padbury
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Departments of Molecular and Systems Biology, and Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Karl T Kelsey
- Departments of Epidemiology, and Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA.
| |
Collapse
|
12
|
Iqbal AJ, Krautter F, Blacksell IA, Wright RD, Austin-Williams SN, Voisin MB, Hussain MT, Law HL, Niki T, Hirashima M, Bombardieri M, Pitzalis C, Tiwari A, Nash GB, Norling LV, Cooper D. Galectin-9 mediates neutrophil capture and adhesion in a CD44 and β2 integrin-dependent manner. FASEB J 2021; 36:e22065. [PMID: 34847625 DOI: 10.1096/fj.202100832r] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023]
Abstract
Neutrophil trafficking is a key component of the inflammatory response. Here, we have investigated the role of the immunomodulatory lectin Galectin-9 (Gal-9) on neutrophil recruitment. Our data indicate that Gal-9 is upregulated in the inflamed vasculature of RA synovial biopsies and report the release of Gal-9 into the extracellular environment following endothelial cell activation. siRNA knockdown of endothelial Gal-9 resulted in reduced neutrophil adhesion and neutrophil recruitment was significantly reduced in Gal-9 knockout mice in a model of zymosan-induced peritonitis. We also provide evidence for Gal-9 binding sites on human neutrophils; Gal-9 binding induced neutrophil activation (increased expression of β2 integrins and reduced expression of CD62L). Intra-vital microscopy confirmed a pro-recruitment role for Gal-9, with increased numbers of transmigrated neutrophils following Gal-9 administration. We studied the role of both soluble and immobilized Gal-9 on human neutrophil recruitment. Soluble Gal-9 significantly strengthened the interaction between neutrophils and the endothelium and inhibited neutrophil crawling on ICAM-1. When immobilized, Gal-9 functioned as an adhesion molecule and captured neutrophils from the flow. Neutrophils adherent to Gal-9 exhibited a spread/activated phenotype that was inhibited by CD18 and CD44 neutralizing antibodies, suggesting a role for these molecules in the pro-adhesive effects of Gal-9. Our data indicate that Gal-9 is expressed and released by the activated endothelium and functions both in soluble form and when immobilized as a neutrophil adhesion molecule. This study paves the way for further investigation of the role of Gal-9 in leukocyte recruitment in different inflammatory settings.
Collapse
Affiliation(s)
- Asif J Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Franziska Krautter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Isobel A Blacksell
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Rachael D Wright
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Shani N Austin-Williams
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Mohammed T Hussain
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hannah L Law
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Toshiro Niki
- Research Division, GalPharma Company, Ltd., Kagawa, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Michele Bombardieri
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Alok Tiwari
- Department of Vascular Surgery, University Hospitals Birmingham, Birmingham, UK
| | - Gerard B Nash
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lucy V Norling
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Dianne Cooper
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Bouti P, Webbers SDS, Fagerholm SC, Alon R, Moser M, Matlung HL, Kuijpers TW. β2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function. Front Immunol 2021; 11:619925. [PMID: 33679708 PMCID: PMC7930317 DOI: 10.3389/fimmu.2020.619925] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of β2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of β2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two β2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting β2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.
Collapse
Affiliation(s)
- Panagiota Bouti
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven D S Webbers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
|
15
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|