1
|
Amiri R, Nabi PN, Fazilat A, Roshani F, Nouhi Kararoudi A, Hemmati-Dinarvand M, Valilo M. Crosstalk between miRNAs and signaling pathways in the development of drug resistance in breast cancer. Horm Mol Biol Clin Investig 2024:hmbci-2024-0066. [PMID: 39665256 DOI: 10.1515/hmbci-2024-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
One of the biggest challenges of today's society is cancer, which imposes a significant financial, emotional and spiritual burden on human life. Breast cancer (BC) is one of the most common cancers that affects people in society, especially women, and due to advanced treatment strategies and primary prevention, it is still the second cause of cancer-related deaths in society. Various genetic and environmental factors are involved in the development of BC. MicroRNAs (miRNA)s are non-coding RNAs, that the degradation or inhibition of them plays an important role in the prevention or development of cancer by modulating many cellular pathways including apoptosis, drug resistance, and tumorigenesis. Drug resistance is one of the important defense mechanisms of cancer cells against anticancer drugs and is considered one of the main causes of cancer treatment failure. Different miRNAs, including mir-7, mir-21, mir-31, and mir-124 control different cell activities, including drug resistance, through different pathways, including PI3K/AKT/mTOR, TGF-β, STAT3, and NF-kB. Therefore, cell signaling pathways are one of the important factors that miRNAs control cellular activities. Hence, in this study, we decided to highlight an overview of the relationship between miRNAs and signaling pathways in the development of drug resistance in BC.
Collapse
Affiliation(s)
- Reza Amiri
- Nargund College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bengaluru, Karnataka, India
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Roshani
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohsen Hemmati-Dinarvand
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Valilo
- Department of Biochemistry, 37555 Faculty of Medicine, Urmia University of Medical Sciences , Urmia, Iran
| |
Collapse
|
2
|
Leili FR, Shali N, Sheibani M, Jafarian MJ, Pashizeh F, Gerami R, Iraj F, Lashkarshekan AA. Detailed pathological role of non-coding RNAs (ncRNAs) in regulating drug resistance of glioblastoma, and update. Pathol Res Pract 2024; 263:155590. [PMID: 39326365 DOI: 10.1016/j.prp.2024.155590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Glioma is a kind of brain tumor that develops in the central nervous system and is classified based on its histology and molecular genetic features. The lifespan of patients does not exceed 22 months. One of the motives for the low effectiveness of glioma treatment is its radioresistance and chemoresistance. Noncoding RNAs (ncRNAs) are a diverse set of transcripts that do not undergo translation to become proteins in glioma. The ncRNAs have been identified as significant regulators of several biological processes in different cell types and tissues, and their abnormal function has been linked to glioma. They are known to impact important occurrences, including carcinogenesis, progression, and enhanced treatment resistance in glioma cells. The ncRNAs control cell proliferation, migration, epithelial-to-mesenchymal transition (EMT), invasion, and drug resistance in glioma cells. The main focus of this study is to inspect the involvement of ncRNAs in the drug resistance of glioma.
Collapse
Affiliation(s)
- Foad Rahmanpour Leili
- Department of Neurology Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Niloofar Shali
- Department of Clinical Biochemistry, School of Medicine, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Tabriz, Tabriz, Iran
| | | | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd 8916188635, Iran
| | - Reza Gerami
- Department of Radiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran.
| | | | | |
Collapse
|
3
|
Beigi S, Salehzadeh A, Habibollahi H, Shandiz SAS, Safa F. The Effect of ZnO Nanoparticles Functionalized with Glutamine and Conjugated with Thiosemicarbazide on Triggering of Apoptosis in the Adenocarcinoma Gastric Cell Line. Adv Biomed Res 2024; 13:72. [PMID: 39434942 PMCID: PMC11493220 DOI: 10.4103/abr.abr_412_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Gastric carcinoma is the fourth most common malignancy worldwide. Conjugation of metal nanoparticles with thiosemicarbazones has shown considerable anti-cancer potential. Materials and Methods Zinc oxide nanoparticles (ZnO NPs) were synthesized, functionalized by glutamine, and conjugated with thiosemicarbazide (ZnO@Gln-TSC). Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy imaging, energy-dispersive X-ray, DLS, and zeta potential were used to characterize the NPs. The toxicity of ZnO NPs, TSC, ZnO@Gln-TSC NPs, and oxaliplatin in AGS cells and ZnO NPs and ZnO@Gln-TSC NPs in HEK293 cells was investigated by MTT assay. Cell apoptosis was evaluated by flow cytometry, caspase-3 activity, and Hoechst staining assays. The intra-cellular reactive oxygen species level and expression level of the CASP3 gene in AGS cells treated with ZnO@Gln-TSC NPs were evaluated. Results The NPs were in the size range of 20 to 70 nm. The DLS and zeta potential were 374 nm and -31.7 mV, respectively. In MTT, the IC50 of ZnO, TSC, oxaliplatin, and ZnO@Gln-TSC NPs for AGS cells were 130, 80.5, 67.7, and 9.8 μg/mL, respectively, and the IC50 of ZnO and ZnO@Gln-TSC NPs for HEK293 cells were 215 and 150.5 μg/mL, respectively. Flow cytometry showed higher apoptosis in the cell treated with the NPs and TSC. Apoptotic features, including cell shrinkage, were recognized. A significant increase of 5.9 folds in the level of ROS was noticed. The activity of caspase-3 and the expression level of the CASP3 gene were increased by1.83 and 1.6 folds after exposure to ZnO@Gln-TSC NPs, respectively. Conclusions This study revealed the anti-cancer potential of ZnO@Gln-TSC NPs to be used for gastric cancer treatment after further in vitro and in vivo assays.
Collapse
Affiliation(s)
- Sadaf Beigi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hadi Habibollahi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Fariba Safa
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
4
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
Bhowmick R, Sarkar RR. Identification of potential microRNAs regulating metabolic plasticity and cellular phenotypes in glioblastoma. Mol Genet Genomics 2023; 298:161-181. [PMID: 36357622 DOI: 10.1007/s00438-022-01966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
MicroRNAs (miRNAs) play important role in regulating cellular metabolism, and are currently being explored in cancer. As metabolic reprogramming in cancer is a major mediator of phenotypic plasticity, understanding miRNA-regulated metabolism will provide opportunities to identify miRNA targets that can regulate oncogenic phenotypes by taking control of cellular metabolism. In the present work, we studied the effect of differentially expressed miRNAs on metabolism, and associated oncogenic phenotypes in glioblastoma (GBM) using patient-derived data. Networks of differentially expressed miRNAs and metabolic genes were created and analyzed to identify important miRNAs that regulate major metabolism in GBM. Graph network-based approaches like network diffusion, backbone extraction, and different centrality measures were used to analyze these networks for identification of potential miRNA targets. Important metabolic processes and cellular phenotypes were annotated to trace the functional responses associated with these miRNA-regulated metabolic genes and associated phenotype networks. miRNA-regulated metabolic gene subnetworks of cellular phenotypes were extracted, and important miRNAs regulating these phenotypes were identified. The most important outcome of the study is the target miRNA combinations predicted for five different oncogenic phenotypes that can be tested experimentally for miRNA-based therapeutic design in GBM. Strategies implemented in the study can be used to generate testable hypotheses in other cancer types as well, and design context-specific miRNA-based therapy for individual patient. Their usability can be further extended to other gene regulatory networks in cancer and other genetic diseases.
Collapse
Affiliation(s)
- Rupa Bhowmick
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
CRISPR/Cas9-induced knockout reveals the role of ABCB1 in the response to temozolomide, carmustine and lomustine in glioblastoma multiforme. Pharmacol Res 2022; 185:106510. [DOI: 10.1016/j.phrs.2022.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
7
|
Bian S, Zhang X, Lin L, Sun L, Guo Z, Pan J, Cui J, Yao H, Xu J, Hao Z, Wang Y, Tong L, Bu X, Kong D, Liu N, Li Y. Exosomal MiR-4261 mediates calcium overload in RBCs by downregulating the expression of ATP2B4 in multiple myeloma. Front Oncol 2022; 12:978755. [PMID: 36091107 PMCID: PMC9458875 DOI: 10.3389/fonc.2022.978755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hypercalcemia induced by multiple myeloma (MM) affects the biological functions of excitable and non-excitable cells. However, red blood cells (RBCs) regulatory effect on calcium in hypercalcemia is still not fully understood. Methods A total of 113 patients with MM osteolytic lesions were studied retrospectively. Flow cytometry and atomic absorption spectroscopy were used to detect calcium content. Immunofluorescence and Western blotting were used to investigate protein expression. GEO and miRNA databases were used to screen miRNAs. Exosomal miR-4261 migration was investigated by Transwell assay. Dual-luciferase assays confirmed the targeting relationship between miR-4261 and ATP2B4. An RBC oxidative stress model was constructed, and Omega-Agatoxin IVA was used to study the role of plasma membrane Ca2+-ATPase 4 (PMCA4) in RBCs. Results The results showed that MM RBCs had calcium overload, and serum calcium levels increased as the number of RBCs decreased. The expression of PMCA4 in MM RBCs was significantly lower than in normal RBCs. The exosomal miR-4261 produced by MM cells could be transferred to RBCs to downregulate the expression of ATP2B4. Conclusions Studies have confirmed that RBCs experience calcium overload in MM with osteolytic lesions, which is related to the downregulation of ATP2B4 by MM exosomal miR-4261.
Collapse
Affiliation(s)
- Sicheng Bian
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xialin Zhang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Leilei Lin
- Department of Hematology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lili Sun
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhibo Guo
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jiangxia Cui
- Department of Hematology, Xi’an International Medical Center Hospital, Xi’an, China
| | - Hanbing Yao
- Department of Hematology, Xi’an International Medical Center Hospital, Xi’an, China
| | - Jing Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuanghui Hao
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuzhu Wang
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liguo Tong
- Central Laboratory, Shanxi Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Xingpeng Bu
- Department of Geriatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Desheng Kong
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
| | - Nianjiao Liu
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
| | - Yinghua Li
- Key Laboratory of Cell Transplantation of National Health Commission, Heilongjiang Key Laboratory of Blood and Hematopoietic System, Harbin Medical University, Harbin, China
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
- *Correspondence: Yinghua Li,
| |
Collapse
|
8
|
Akhtarkhavari T, Bahrami AR, M Matin M. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur J Pharmacol 2022; 932:175233. [PMID: 36038011 DOI: 10.1016/j.ejphar.2022.175233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Despite tremendous achievements in the field of targeted cancer therapy, chemotherapy is still the main treatment option, which is challenged by acquired drug resistance. Various microRNAs are involved in developing drug-resistant cells. miR-21 is one of the first identified miRNAs involved in this process. Here, we conducted a literature review to categorize different mechanisms employed by miR-21 to drive drug resistance. miR-21 targets various genes involved in many pathways that can justify chemoresistance. It alters cancer cell metabolism and facilitates adaptation to the new environment. It also enhances drug detoxification in cancerous cells and increases genomic instability. We also summarized various strategies applied for the inhibition of miR-21 in order to reverse cancer drug resistance. These strategies include the delivery of antagomiRs, miRZip knockdown vectors, inhibitory small molecules, CRISPR-Cas9 technology, catalytic nucleic acids, artificial DNA and RNA sponges, and nanostructures like mesoporous silica nanoparticles, dendrimers, and exosomes. Furthermore, current challenges and limitations in targeting miR-21 are discussed in this article. Although huge progress has been made in the downregulation of miR-21 in drug-resistant cancer cells, there are still many challenges to be resolved. More research is still required to find the best strategy and timeline for the downregulation of miR-21 and also the most feasible approach for the delivery of this system into the tumor cells. In conclusion, downregulation of miR-21 would be a promising strategy to reverse chemoresistance, but still, more studies are required to clarify the aforementioned issues.
Collapse
Affiliation(s)
- Tara Akhtarkhavari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.
| |
Collapse
|
9
|
Yu J, Zhu D, Zeng C, Zhang Y, Yang H, Xu Y. MicroRNA expression profiles in the granulosa cells of infertile patients undergoing progestin primed ovarian stimulation. Eur J Obstet Gynecol Reprod Biol 2022; 276:228-235. [DOI: 10.1016/j.ejogrb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
|
10
|
Verploegh ISC, Conidi A, Brouwer RWW, Balcioglu HE, Karras P, Makhzami S, Korporaal A, Marine JC, Lamfers M, Van IJcken WFJ, Leenstra S, Huylebroeck D. Comparative single-cell RNA-sequencing profiling of BMP4-treated primary glioma cultures reveals therapeutic markers. Neuro Oncol 2022; 24:2133-2145. [PMID: 35639831 PMCID: PMC9713526 DOI: 10.1093/neuonc/noac143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive primary brain tumor. Its cellular composition is very heterogeneous, with cells exhibiting stem-cell characteristics (GSCs) that co-determine therapy resistance and tumor recurrence. Bone Morphogenetic Protein (BMP)-4 promotes astroglial and suppresses oligodendrocyte differentiation in GSCs, processes associated with superior patient prognosis. We characterized variability in cell viability of patient-derived GBM cultures in response to BMP4 and, based on single-cell transcriptome profiling, propose predictive positive and early-response markers for sensitivity to BMP4. METHODS Cell viability was assessed in 17 BMP4-treated patient-derived GBM cultures. In two cultures, one highly-sensitive to BMP4 (high therapeutic efficacy) and one with low-sensitivity, response to treatment with BMP4 was characterized. We applied single-cell RNA-sequencing, analyzed the relative abundance of cell clusters, searched for and identified the aforementioned two marker types, and validated these results in all 17 cultures. RESULTS High variation in cell viability was observed after treatment with BMP4. In three cultures with highest sensitivity for BMP4, a substantial new cell subpopulation formed. These cells displayed decreased cell proliferation and increased apoptosis. Neuronal differentiation was reduced most in cultures with little sensitivity for BMP4. OLIG1/2 levels were found predictive for high sensitivity to BMP4. Activation of ribosomal translation (RPL27A, RPS27) was up-regulated within one day in cultures that were very sensitive to BMP4. CONCLUSION The changes in composition of patient-derived GBM cultures obtained after treatment with BMP4 correlate with treatment efficacy. OLIG1/2 expression can predict this efficacy, and upregulation of RPL27A and RPS27 are useful early-response markers.
Collapse
Affiliation(s)
| | | | - Rutger W W Brouwer
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | | | - Samira Makhzami
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anne Korporaal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Martine Lamfers
- Department of Neurosurgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilfred F J Van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Corresponding Author: Danny Huylebroeck, Department of Cell Biology, Erasmus University Medical Center, Building Ee, room Ee-1040b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands ()
| |
Collapse
|
11
|
Alghamian Y, Soukkarieh C, Abbady AQ, Murad H. Investigation of role of CpG methylation in some epithelial mesenchymal transition gene in a chemoresistant ovarian cancer cell line. Sci Rep 2022; 12:7494. [PMID: 35523936 PMCID: PMC9076839 DOI: 10.1038/s41598-022-11634-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Ovarian cancer is one of the lethal gynecologic cancers. Chemoresistance is an essential reason for treatment failure and high mortality. Emerging evidence connects epithelial-mesenchymal transition (EMT) like changes and acquisition of chemoresistance in cancers. Including EMT, DNA methylation influences cellular processes. Here, EMT-like changes were investigated in cisplatin-resistant A2780 ovarian cancer cells (A2780cis), wherein role of DNA methylation in some EMT genes regulations was studied. Cell viability assay was carried out to test the sensitivity of A2780, and A2780cis human cancer cell lines to cisplatin. Differential mRNA expression of EMT markers using qPCR was conducted to investigate EMT like changes. CpG methylation role in gene expression regulation was investigated by 5-azacytidine (5-aza) treatment. DNA methylation changes in EMT genes were identified using Methylscreen assay between A2780 and A2780cis cells. In order to evaluate if DNA methylation changes are causally underlying EMT, treatment with 5-aza followed by Cisplatin was done on A2780cis cells. Accordingly, morphological changes were studied under the microscope, whereas EMT marker's gene expression changes were investigated using qPCR. In this respect, A2780cis cell line has maintained its cisplatin tolerance ability and exhibits phenotypic changes congruent with EMT. Methylscreen assay and qPCR study have revealed DNA hypermethylation in promoters of epithelial adhesion molecules CDH1 and EPCAM in A2780cis compared to the cisplatin-sensitive parental cells. These changes were concomitant with gene expression down-regulation. DNA hypomethylation associated with transcription up-regulation of the mesenchymal marker TWIST2 was observed in the resistant cells. Azacytidine treatment confirmed DNA methylation role in regulating gene expression of CDH1, EPCAM and TWIST2 genes. A2780cis cell line undergoes EMT like changes, and EMT genes are regulated by DNA methylation. To that end, a better understanding of the molecular alterations that correlate with chemoresistance may lead to therapeutic benefits such as chemosensitivity restoration.
Collapse
Affiliation(s)
- Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdul Qader Abbady
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Hossam Murad
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| |
Collapse
|
12
|
Matou-Nasri S, Najdi M, AlSaud NA, Alhaidan Y, Al-Eidi H, Alatar G, AlWadaani D, Trivilegio T, AlSubait A, AlTuwaijri A, Abudawood M, Almuzzaini B. Blockade of p38 MAPK overcomes AML stem cell line KG1a resistance to 5-Fluorouridine and the impact on miRNA profiling. PLoS One 2022; 17:e0267855. [PMID: 35511922 PMCID: PMC9071118 DOI: 10.1371/journal.pone.0267855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2022] Open
Abstract
Most of the AML patients in remission develop multidrug resistance after the first-line therapy and relapse. AML stem cells have gained attention for their chemoresistance potentials. Chemoresistance is a multifactorial process resulting from altered survival signaling pathways and apoptosis regulators such as MAPK, NF-κB activation and ROS production. We targeted the survival pathway p38 MAPK, NF-κB and ROS generation in human chemoresistant AML stem cell line KG1a, susceptible to enhance cell sensitivity to the chemotherapy drug 5-Fluorouridine, compared to the chemosensitive AML cell line HL60. After confirming the phenotypic characterization of KG1a and HL60 cells using flow cytometry and transcriptomic array analyses, cell treatment with the NF-κB inhibitor IKKVII resulted in a complete induction of apoptosis, and a few p38 MAPK inhibitor SB202190-treated cells underwent apoptosis. No change in the apoptosis status was observed in the ROS scavenger N-acetylcysteine-treated cells. The p38 MAPK pathway blockade enhanced the KG1a cell sensitivity to 5-Fluorouridine, which was associated with the upregulation of microribonucleic acid-(miR-)328-3p, as determined by the microarray-based miRNA transcriptomic analysis. The downregulation of the miR-210-5p in SB202190-treated KG1a cells exposed to FUrd was monitored using RT-qPCR. The miR-328-3p is known for the enhancement of cancer cell chemosensitivity and apoptosis induction, and the downregulation of miR-210-5p is found in AML patients in complete remission. In conclusion, we highlighted the key role of the p38 MAPK survival pathway in the chemoresistance capacity of the AML stem cells and potentially involved miRNAs, which may pave the way for the development of a new therapeutic strategy targeting survival signaling proteins and reduce the rate of AML relapse.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| | - Maria Najdi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Postgraduate program, King Saud University, Riyadh, Saudi Arabia
| | - Nouran Abu AlSaud
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Ghada Alatar
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deemah AlWadaani
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Thadeo Trivilegio
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Arwa AlSubait
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Abeer AlTuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| |
Collapse
|
13
|
Mukherjee S, Pillai PP. Current insights on extracellular vesicle-mediated glioblastoma progression: Implications in drug resistance and epithelial-mesenchymal transition. Biochim Biophys Acta Gen Subj 2022; 1866:130065. [PMID: 34902452 DOI: 10.1016/j.bbagen.2021.130065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most fatal tumors of the central nervous system with high rate of disease progression, diagnosis, prognosis and low survival rate. Therapeutic approaches that relied on surgical resection and chemotherapy have been unable to curb the disease progression and subsequently leading to increase in incidences of GBM reoccurrence. SCOPE OF THE REVIEW In the recent times, membrane-bound extracellular vesicles (EVs) have been observed as one of the key reasons for the uncontrolled growth of GBM. EVs are shown to have the potential to contribute to the disease progression via mediating drug resistance and epithelial-mesenchymal transition. The GBM-derived EVs (GDEVs) with its cargo contents act as the biological trojan horse and lead to disease progression after being received by the recipient target cells. This review article highlights the biophysical, biochemical properties of EVs, its cargo contents and its potential role in the growth and progression of GBM by altering tumour microenvironment. MAJOR CONCLUSIONS EVs are being explored for serving as novel disease biomarkers in a variety of cancer types such as adenocarcinoma, pancreatic cancer, color rectal cancer, gliomas and glioblastomas. Improvement in the EV isolation protocols, polymer-based separation techniques and transcriptomics, have made EVs a key diagnostic marker to unravel the progression and early GBM diagnosis. GDEVs role in tumour progression is under extensive investigations. GENERAL SIGNIFICANCE Attempts have been also made to discuss and compare the usage of EVs as potential therapeutic targets versus existing therapies targeting drug resistance and EMT.
Collapse
Affiliation(s)
- Swagatama Mukherjee
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
14
|
Pavlíková L, Šereš M, Breier A, Sulová Z. The Roles of microRNAs in Cancer Multidrug Resistance. Cancers (Basel) 2022; 14:cancers14041090. [PMID: 35205839 PMCID: PMC8870231 DOI: 10.3390/cancers14041090] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The resistance of neoplastic cells to multiple drugs is a serious problem in cancer chemotherapy. The molecular causes of multidrug resistance in cancer are largely known, but less is known about the mechanisms by which cells deliver phenotypic changes that resist the attack of anticancer drugs. The findings of RNA interference based on microRNAs represented a breakthrough in biology and pointed to the possibility of sensitive and targeted regulation of gene expression at the post-transcriptional level. Such regulation is also involved in the development of multidrug resistance in cancer. The aim of the current paper is to summarize the available knowledge on the role of microRNAs in resistance to multiple cancer drugs. Abstract Cancer chemotherapy may induce a multidrug resistance (MDR) phenotype. The development of MDR is based on various molecular causes, of which the following are very common: induction of ABC transporter expression; induction/activation of drug-metabolizing enzymes; alteration of the expression/function of apoptosis-related proteins; changes in cell cycle checkpoints; elevated DNA repair mechanisms. Although these mechanisms of MDR are well described, information on their molecular interaction in overall multidrug resistance is still lacking. MicroRNA (miRNA) expression and subsequent RNA interference are candidates that could be important players in the interplay of MDR mechanisms. The regulation of post-transcriptional processes in the proteosynthetic pathway is considered to be a major function of miRNAs. Due to their complementarity, they are able to bind to target mRNAs, which prevents the mRNAs from interacting effectively with the ribosome, and subsequent degradation of the mRNAs can occur. The aim of this paper is to provide an overview of the possible role of miRNAs in the molecular mechanisms that lead to MDR. The possibility of considering miRNAs as either specific effectors or interesting targets for cancer therapy is also analyzed.
Collapse
Affiliation(s)
- Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| |
Collapse
|
15
|
Dhar D, Ghosh S, Das S, Chatterjee J. A review of recent advances in magnetic nanoparticle-based theranostics of glioblastoma. Nanomedicine (Lond) 2022; 17:107-132. [PMID: 35000429 DOI: 10.2217/nnm-2021-0348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rapid vascular growth, infiltrative cells and high tumor heterogenicity are some glioblastoma multiforme (GBM) characteristics, making it the most lethal form of brain cancer. Low efficacy of the conventional treatment modalities leads to rampant disease progression and a median survival of 15 months. Magnetic nanoparticles (MNPs), due to their unique physical features/inherent abilities, have emerged as a suitable theranostic platform for targeted GBM treatment. Thus, new strategies are being designed to enhance the efficiency of existing therapeutic techniques such as chemotherapy, radiotherapy, and so on, using MNPs. Herein, the limitations of the current therapeutic strategies, the role of MNPs in mitigating those inadequacies, recent advances in the MNP-based theranostics of GBM and possible future directions are discussed.
Collapse
Affiliation(s)
- Dhruba Dhar
- School of Medical Sciences & Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Swachhatoa Ghosh
- School of Medical Sciences & Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Soumen Das
- School of Medical Sciences & Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Jyotirmoy Chatterjee
- School of Medical Sciences & Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
16
|
Pan J, Huang G, Yin Z, Cai X, Gong E, Li Y, Xu C, Ye Z, Cao Z, Cheng W. Circular RNA FLNA acts as a sponge of miR-486-3p in promoting lung cancer progression via regulating XRCC1 and CYP1A1. Cancer Gene Ther 2022; 29:101-121. [PMID: 33500536 PMCID: PMC8761575 DOI: 10.1038/s41417-021-00293-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/18/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023]
Abstract
Significantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.
Collapse
Affiliation(s)
- Jiongwei Pan
- Department of Respiratory, the Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang, 323000, China
| | - Gang Huang
- Department of Chinese Medicine, the Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang, 323000, China
| | - Zhangyong Yin
- Department of Respiratory, the Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang, 323000, China
| | - Xiaoping Cai
- Department of Respiratory, the Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang, 323000, China
| | - Enhui Gong
- Department of Respiratory, the Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang, 323000, China
| | - Yuling Li
- Department of Respiratory, the Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang, 323000, China
| | - Cunlai Xu
- Department of Respiratory, the Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang, 323000, China
| | - Zaiting Ye
- Department of Radiology, the Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang, 323000, China
| | - Zhuo Cao
- The Sixth Affiliated Hospital of Wenzhou Medical University; Longquan Branch, Lishui People's Hospitlal, Lishui, China.
| | - Wei Cheng
- Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Province Key Laboratory of Anesthesiology and Center for Pain Research and Treatment, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
17
|
Wang N, Li J, He J, Jing YG, Zhao WD, Yu WJ, Wang J. Knockdown of lncRNA CCAT1 Inhibits the Progression of Colorectal Cancer via hsa-miR-4679 Mediating the Downregulation of GNG10. J Immunol Res 2021; 2021:8930813. [PMID: 35005034 PMCID: PMC8739552 DOI: 10.1155/2021/8930813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/08/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
Great concerns have raised crucial roles of long noncoding RNAs (lncRNAs) on colorectal cancer progression due to the increasing number of studies in cancer development. Previous studies reveal that lncRNA CCAT1 plays an important role in the progression of a variety of cancers. However, the role of lncRNA CCAT1 in colorectal cancer is still unclear. In this study, we found that in both colorectal tissues and cell lines the level of lncRNA CCAT1 was increased. Downregulation of lncRNA CCAT1 inhibited the proliferation, migration, and invasion of colorectal cell lines and promoted apoptosis. We then found that hsa-miR-4679 could bind to lncRNA CCAT1 directly, and with further functional analyses, we confirmed that lncRNA CCAT1 sponged hsa-miR-4679 to promote the progression of colorectal cancer. Next, we found that hsa-miR-4679 was directly bound to 3'UTR of GNG10 (guanine nucleotide-binding protein, gamma 10). GNG10 overexpression promoted the progression of colorectal cancer, and this phenotype could be reversed by miR-4679 mimics. At last, we knocked down CCAT1 in vivo and found that sh-CCAT1 reduced the tumor size and the number of proliferating cells. In summary, our findings revealed that lncRNA CCAT1 facilitated colorectal cancer progression via the hsa-miR-4679/GNG10 axis and provided new potential therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Ning Wang
- Department of Surgery, School of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jun Li
- Department of Surgery, School of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Ju He
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali University, Dali, Yunnan 671000, China
| | - Yong-Guang Jing
- Department of Human Anatomy, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Wei-dong Zhao
- Laboratory Department, School of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Wen-jin Yu
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali University, Dali, Yunnan 671000, China
| | - Jing Wang
- Department of Surgery, School of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| |
Collapse
|
18
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
19
|
Gebhardt K, Edemir B, Groß E, Nemetschke L, Kewitz-Hempel S, Moritz RKC, Sunderkötter C, Gerloff D. BRAF/EZH2 Signaling Represses miR-129-5p Inhibition of SOX4 Thereby Modulating BRAFi Resistance in Melanoma. Cancers (Basel) 2021; 13:cancers13102393. [PMID: 34063443 PMCID: PMC8155874 DOI: 10.3390/cancers13102393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Approximately 60% of all melanomas are associated with a constitutive activating BRAF mutation. Inhibition of BRAF downstream signaling by targeted therapies significantly improved patient outcomes. However, most patients eventually develop resistance. Here we identified miR-129-5p as a novel tumor suppressor in BRAF mutated melanoma, which expression is increased during response to BRAF inhibition, but repressed in an EZH2 dependent manner during activated BRAF signaling. Overexpression of miR-129-5p decreases melanoma cell proliferation and improves response to BRAF inhibition by targeting SOX4. Taken together our results emphasize SOX4 as a potential therapeutic target in BRAF driven melanoma which could be attacked by pharmaceutically. Abstract Many melanomas are associated with activating BRAF mutation. Targeted therapies by inhibitors of BRAF and MEK (BRAFi, MEKi) show marked antitumor response, but become limited by drug resistance. The mechanisms for this are not fully revealed, but include miRNA. Wishing to improve efficacy of BRAFi and knowing that certain miRNAs are linked to resistance to BRAFi, we wanted to focus on miRNAs exclusively associated with response to BRAFi. We found increased expression of miR-129-5p during BRAFi treatment of BRAF- mutant melanoma cells. Parallel to emergence of resistance we observed mir-129-5p expression to become suppressed by BRAF/EZH2 signaling. In functional analyses we revealed that miR-129-5p acts as a tumor suppressor as its overexpression decreased cell proliferation, improved treatment response and reduced viability of BRAFi resistant melanoma cells. By protein expression analyses and luciferase reporter assays we confirmed SOX4 as a direct target of mir-129-5p. Thus, modulation of the miR-129-5p-SOX4 axis could serve as a promising novel strategy to improve response to BRAFi in melanoma.
Collapse
Affiliation(s)
- Kathleen Gebhardt
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Bayram Edemir
- Department of Internal Medicine IV, Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (B.E.); (E.G.)
| | - Elisabeth Groß
- Department of Internal Medicine IV, Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (B.E.); (E.G.)
| | - Linda Nemetschke
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Stefanie Kewitz-Hempel
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Rose K. C. Moritz
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Dennis Gerloff
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
- Correspondence: ; Tel.: +49-0345-557-5255
| |
Collapse
|
20
|
Lan YL, Zhang J. Modulation of untranslated region alternative polyadenylation in glioma tumorigenesis. Biomed Pharmacother 2021; 137:111416. [DOI: 10.1016/j.biopha.2021.111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
|
21
|
Taheri M, Mahmud Hussen B, Tondro Anamag F, Shoorei H, Dinger ME, Ghafouri-Fard S. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target 2021; 30:1-21. [PMID: 33788650 DOI: 10.1080/1061186x.2021.1909052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Choromańska A, Chwiłkowska A, Kulbacka J, Baczyńska D, Rembiałkowska N, Szewczyk A, Michel O, Gajewska-Naryniecka A, Przystupski D, Saczko J. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules 2021; 26:1850. [PMID: 33806009 PMCID: PMC8037978 DOI: 10.3390/molecules26071850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Modifications of the composition or organization of the cancer cell membrane seem to be a promising targeted therapy. This approach can significantly enhance drug uptake or intensify the response of cancer cells to chemotherapeutics. There are several methods enabling lipid bilayer modifications, e.g., pharmacological, physical, and mechanical. It is crucial to keep in mind the significance of drug resistance phenomenon, ion channel and specific receptor impact, and lipid bilayer organization in planning the cell membrane-targeted treatment. In this review, strategies based on cell membrane modulation or reorganization are presented as an alternative tool for future therapeutic protocols.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| |
Collapse
|
23
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
24
|
MicroRNA-Based Therapeutics for Drug-Resistant Colorectal Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020136. [PMID: 33567635 PMCID: PMC7915952 DOI: 10.3390/ph14020136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Although therapeutic approaches for patients with colorectal cancer (CRC) have improved in the past decades, the problem of drug resistance still persists and acts as a major obstacle for effective therapy. Many studies have shown that drug resistance is related to reduced drug uptake, modification of drug targets, and/or transformation of cell cycle checkpoints. A growing body of evidence indicates that several microRNAs (miRNAs) may contribute to the drug resistance to chemotherapy, targeted therapy, and immunotherapy by regulating the drug resistance-related target genes in CRC. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with CRC. In this review, we summarized the recent discoveries regarding anti-cancer drug-related miRNAs and their molecular mechanisms in CRC. Furthermore, we discussed the challenges associated with the clinical application of miRNAs as biomarkers for the diagnosis of drug-resistant patients and as therapeutic targets for CRC treatment.
Collapse
|
25
|
Sato Y, Suzuki R, Takagi T, Sugimoto M, Ohira H. Circulating extracellular vesicle-encapsulated microRNA as screening biomarkers for intraductal papillary mucinous neoplasm. Oncol Lett 2020; 20:315. [PMID: 33133251 PMCID: PMC7590436 DOI: 10.3892/ol.2020.12178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Since intraductal papillary mucinous neoplasms (IPMNs) occasionally contain pancreatic malignancies, it is vital to develop a screening program that can detect IPMNs in the general population and that can identify IPMNs with high malignant potential. The present study investigated whether microRNAs (miRNAs/miRs) in the blood may be diagnostic markers for IPMN screening. Initially, extracellular vesicle-encapsulated miRNAs (EV-miRNAs) in the serum with altered expression between IPMN, IPMN-derived carcinoma (IPMC) and control samples, were identified using microarray analysis. To validate the microarray results, the expression levels of selected EV-miRNAs were detected. Briefly, serum EV-miRNAs were extracted from 38 patients with IPMN (11 patients with IPMC and 27 patients with benign IPMN) and 21 non-tumor controls. The results of the microarray analysis revealed that the expression levels of EV-miR-22-3p, EV-miR-4539 and EV-miR-6132 were higher in the IPMN and IPMC serum samples compared with those in the control samples. With regards to discriminating IPMNs from controls, only miR-4539 exhibited a significant difference (P=0.004). In the comparison between IPMN and IPMC, carcinogenic antigen 19-9 (CA19-9) and EV-miR-6132 exhibited significant differences (P=0.01 and P=0.007, respectively). Receiver operating characteristic (ROC) curve analysis demonstrated that EV-miR-4539 could discriminate patients with IPMNs from control patients, with an area under the curve (AUC) of 0.72. Additionally, ROC analysis indicated that the markers could discriminate patients with IPMC from benign IPMN, with AUC values of 0.77 for EV-miR-6132 and 0.74 for CA19-9. In conclusion, the present study suggested that EV-miRNAs may be used as diagnostic markers for the detection of IPMNs in the general population as well as for identifying IPMNs with high malignant potential.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Rei Suzuki
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tadayuki Takagi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Mitsuru Sugimoto
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
26
|
Gajda E, Godlewska M, Mariak Z, Nazaruk E, Gawel D. Combinatory Treatment with miR-7-5p and Drug-Loaded Cubosomes Effectively Impairs Cancer Cells. Int J Mol Sci 2020; 21:E5039. [PMID: 32708846 PMCID: PMC7404280 DOI: 10.3390/ijms21145039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is an emerging problem in the treatment of cancer. Therefore, there is a necessity for novel strategies that would sensitize tumor cells to the administered chemotherapeutics. One of the innovative approaches in fighting drug-resistant tumors is the treatment of cancer with microRNA (miRNA), or the use of cubosomes (lipid nanoparticles) loaded with drugs. Here, we present a study on a novel approach, which combines both tools. METHODS Cubosomes loaded with miR-7-5p and chemotherapeutics were developed. The effects of drug- and miRNA-loaded vehicles on glioma- (A172, T98G), papillary thyroid- (TPC-1) and cervical carcinoma-derived (HeLa) cells were analyzed using molecular biology techniques, including quantitative real-time PCR, MTS-based cell proliferation test, flow cytometry and spheroids formation assay. RESULTS The obtained data indicate that miR-7-5p increases the sensitivity of the tested cells to the drug, and that nanoparticles loaded with both miRNA and the drug produce a greater anti-tumor effect in comparison to the free drug treatment. It was found that an increased level of apoptosis in the drug/miRNA co-treated cells is accompanied by an alternation in the expression of the genes encoding for key MDR proteins of the ABC family. CONCLUSIONS Overall, co-administration of miR-7-5p with a chemotherapeutic can be considered a promising strategy, leading to reduced MDR and the induction of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Damian Gawel
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|