1
|
Xie Y, Ye Z, Wan X, Deng H, Sun W, He X, Chen K. Screening of exopolysaccharide-producing Enterobacter aerogenes NJ1023 and its cadaverine biosynthesis promotion. Front Microbiol 2023; 14:1200123. [PMID: 37577413 PMCID: PMC10414541 DOI: 10.3389/fmicb.2023.1200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Enterobacter aerogenes, the gram-negative bacteria belonging to the family Enterobacteriaceae, lacks the ability to synthesize chemicals. However, in this study, a strain of Enterobacter aerogenes NJ1023 screened from the soil containing petrochemicals was found to be capable of producing extracellular polysaccharides (EPSs). After purification of the polysaccharide, the chemical composition and physicochemical properties of the polysaccharide were analyzed by UV-Vis spectra, FTIR spectroscopy and GC-MS, etc. The results showed that: The molecular weight of the polysaccharide produced by this strain was only 2.7×103 Da, which was lower than that reported in other polysaccharides from the same genus. The polysaccharide produced by E. aerogenes NJ1023 mainly comprised xylose, glucose, galactose, and N-acetylglucosamine with a molar ratio of 0.27: 4.52: 1.74: 0.2, which differed from those reported from the same genus. The results demonstrated that lower incubation temperatures and shaking speeds were more favorable for EPSs synthesis, while higher incubation temperatures and shaking speeds favored cell growth. Additionally, the EPSs produced by E. aerogenes NJ1023 significantly protected the Escherichia coli cells against cadaverine stress. Overall, the discovery of EPSs produced by E. aerogenes increased the diversity of bacterial polysaccharides and broadened the potential applications of this species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xun He
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical, Nanjing Tech University, Nanjing, China
| | | |
Collapse
|
2
|
Kumari K, Rawat V, Shadan A, Sharma PK, Deb S, Singh RP. In-depth genome and pan-genome analysis of a metal-resistant bacterium Pseudomonas parafulva OS-1. Front Microbiol 2023; 14:1140249. [PMID: 37408640 PMCID: PMC10318148 DOI: 10.3389/fmicb.2023.1140249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
A metal-resistant bacterium Pseudomonas parafulva OS-1 was isolated from waste-contaminated soil in Ranchi City, India. The isolated strain OS-1 showed its growth at 25-45°C, pH 5.0-9.0, and in the presence of ZnSO4 (upto 5 mM). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OS-1 belonged to the genus Pseudomonas and was most closely related to parafulva species. To unravel the genomic features, we sequenced the complete genome of P. parafulva OS-1 using Illumina HiSeq 4,000 sequencing platform. The results of average nucleotide identity (ANI) analysis indicated the closest similarity of OS-1 to P. parafulva PRS09-11288 and P. parafulva DTSP2. The metabolic potential of P. parafulva OS-1 based on Clusters of Othologous Genes (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux, etc., which is relatively rare in P. parafulva strains. Compared with other parafulva strains, P. parafulva OS-1 was found to have the unique β-lactam resistance and type VI secretion system (T6SS) gene. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain OS-1 have strong biomass degradation potential. The presence of genomic complexity in the OS-1 genome indicates that horizontal gene transfer (HGT) might happen during evolution. Therefore, genomic and comparative genome analysis of parafulva strains is valuable for further understanding the mechanism of resistance to metal stress and opens a perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Vaishnavi Rawat
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukerjee University, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
3
|
Chlebek D, Płociniczak T, Gobetti S, Kumor A, Hupert-Kocurek K, Pacwa-Płociniczak M. Analysis of the Genome of the Heavy Metal Resistant and Hydrocarbon-Degrading Rhizospheric Pseudomonas qingdaonensis ZCR6 Strain and Assessment of Its Plant-Growth-Promoting Traits. Int J Mol Sci 2021; 23:ijms23010214. [PMID: 35008639 PMCID: PMC8745256 DOI: 10.3390/ijms23010214] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Pseudomonas qingdaonensis ZCR6 strain, isolated from the rhizosphere of Zea mays growing in soil co-contaminated with hydrocarbons and heavy metals, was investigated for its plant growth promotion, hydrocarbon degradation, and heavy metal resistance. In vitro bioassays confirmed all of the abovementioned properties. ZCR6 was able to produce indole acetic acid (IAA), siderophores, and ammonia, solubilized Ca3(PO4)2, and showed surface active properties and activity of cellulase and very high activity of 1-aminocyclopropane-1-carboxylic acid deaminase (297 nmol α-ketobutyrate mg−1 h−1). The strain degraded petroleum hydrocarbons (76.52% of the initial hydrocarbon content was degraded) and was resistant to Cd, Zn, and Cu (minimal inhibitory concentrations reached 5, 15, and 10 mM metal, respectively). The genome of the ZCR6 strain consisted of 5,507,067 bp, and a total of 5055 genes were annotated, of which 4943 were protein-coding sequences. Annotation revealed the presence of genes associated with nitrogen fixation, phosphate solubilization, sulfur metabolism, siderophore biosynthesis and uptake, synthesis of IAA, ethylene modulation, heavy metal resistance, exopolysaccharide biosynthesis, and organic compound degradation. Complete characteristics of the ZCR6 strain showed its potential multiway properties for enhancing the phytoremediation of co-contaminated soils. To our knowledge, this is the first analysis of the biotechnological potential of the species P. qingdaonensis.
Collapse
|
4
|
Gustaw K, Koper P, Polak-Berecka M, Rachwał K, Skrzypczak K, Waśko A. Genome and Pangenome Analysis of Lactobacillus hilgardii FLUB-A New Strain Isolated from Mead. Int J Mol Sci 2021; 22:ijms22073780. [PMID: 33917427 PMCID: PMC8038741 DOI: 10.3390/ijms22073780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
The production of mead holds great value for the Polish liquor industry, which is why the bacterium that spoils mead has become an object of concern and scientific interest. This article describes, for the first time, Lactobacillus hilgardii FLUB newly isolated from mead, as a mead spoilage bacteria. Whole genome sequencing of L. hilgardii FLUB revealed a 3 Mbp chromosome and five plasmids, which is the largest reported genome of this species. An extensive phylogenetic analysis and digital DNA-DNA hybridization confirmed the membership of the strain in the L. hilgardii species. The genome of L. hilgardii FLUB encodes 3043 genes, 2871 of which are protein coding sequences, 79 code for RNA, and 93 are pseudogenes. L. hilgardii FLUB possesses three clustered regularly interspaced short palindromic repeats (CRISPR), eight genomic islands (44,155 bp to 6345 bp), and three (two intact and one incomplete) prophage regions. For the first time, the characteristics of the genome of this species were described and a pangenomic analysis was performed. The concept of the pangenome was used not only to establish the genetic repertoire of this species, but primarily to highlight the unique characteristics of L. hilgardii FLUB. The core of the genome of L. hilgardii is centered around genes related to the storage and processing of genetic information, as well as to carbohydrate and amino acid metabolism. Strains with such a genetic constitution can effectively adapt to environmental changes. L. hilgardii FLUB is distinguished by an extensive cluster of metabolic genes, arsenic detoxification genes, and unique surface layer proteins. Variants of MRS broth with ethanol (10-20%), glucose (2-25%), and fructose (2-24%) were prepared to test the strain's growth preferences using Bioscreen C and the PYTHON script. L. hilgardii FLUB was found to be more resistant than a reference strain to high concentrations of alcohol (18%) and sugars (25%). It exhibited greater preference for fructose than glucose, which suggests it has a fructophilic nature. Comparative genomic analysis supported by experimental research imitating the conditions of alcoholic beverages confirmed the niche specialization of L. hilgardii FLUB to the mead environment.
Collapse
Affiliation(s)
- Klaudia Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
- Correspondence: (K.G.); (P.K.)
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: (K.G.); (P.K.)
| | - Magdalena Polak-Berecka
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| | - Katarzyna Skrzypczak
- Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| |
Collapse
|
5
|
Szczerba H, Dudziak K, Krawczyk M, Targoński Z. A Genomic Perspective on the Potential of Wild-Type Rumen Bacterium Enterobacter sp. LU1 as an Industrial Platform for Bio-Based Succinate Production. Int J Mol Sci 2020; 21:ijms21144835. [PMID: 32650546 PMCID: PMC7402333 DOI: 10.3390/ijms21144835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Enterobacter sp. LU1, a wild-type bacterium originating from goat rumen, proved to be a potential succinic acid producer in previous studies. Here, the first complete genome of this strain was obtained and analyzed from a biotechnological perspective. A hybrid sequencing approach combining short (Illumina MiSeq) and long (ONT MinION) reads allowed us to obtain a single continuous chromosome 4,636,526 bp in size, with an average 55.6% GC content that lacked plasmids. A total of 4425 genes, including 4283 protein-coding genes, 25 ribosomal RNA (rRNA)-, 84 transfer RNA (tRNA)-, and 5 non-coding RNA (ncRNA)-encoding genes and 49 pseudogenes, were predicted. It has been shown that genes involved in transport and metabolism of carbohydrates and amino acids and the transcription process constitute the major group of genes, according to the Clusters of Orthologous Groups of proteins (COGs) database. The genetic ability of the LU1 strain to metabolize a wide range of industrially relevant carbon sources has been confirmed. The genome exploration indicated that Enterobacter sp. LU1 possesses all genes that encode the enzymes involved in the glycerol metabolism pathway. It has also been shown that succinate can be produced as an end product of fermentation via the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. The transport system involved in succinate excretion into the growth medium and the genes involved in the response to osmotic and oxidative stress have also been recognized. Furthermore, three intact prophage regions ~70.3 kb, ~20.9 kb, and ~49.8 kb in length, 45 genomic islands (GIs), and two clustered regularly interspaced short palindromic repeats (CRISPR) were recognized in the genome. Sequencing and genome analysis of Enterobacter sp. LU1 confirms many earlier results based on physiological experiments and provides insight into their genetic background. All of these findings illustrate that the LU1 strain has great potential to be an efficient platform for bio-based succinate production.
Collapse
Affiliation(s)
- Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-462-3402
| | - Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | - Zdzisław Targoński
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| |
Collapse
|