1
|
Carver JJ, Zhu Y. Metzincin metalloproteases in PGC migration and gonadal sex conversion. Gen Comp Endocrinol 2023; 330:114137. [PMID: 36191636 DOI: 10.1016/j.ygcen.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
2
|
Koomgun T, Laopichienpong N, Singchat W, Panthum T, Phatcharakullawarawat R, Kraichak E, Sillapaprayoon S, Ahmad SF, Muangmai N, Peyachoknagul S, Duengkae P, Ezaz T, Srikulnath K. Genome Complexity Reduction High-Throughput Genome Sequencing of Green Iguana ( Iguana iguana) Reveal a Paradigm Shift in Understanding Sex-Chromosomal Linkages on Homomorphic X and Y Sex Chromosomes. Front Genet 2020; 11:556267. [PMID: 33193634 PMCID: PMC7606854 DOI: 10.3389/fgene.2020.556267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
The majority of lizards classified in the superfamily Iguanoidea have an XX/XY sex-determination system in which sex-chromosomal linkage shows homology with chicken (Gallus gallus) chromosome 15 (GGA15). However, the genomics of sex chromosomes remain largely unexplored owing to the presence of homomorphic sex chromosomes in majority of the species. Recent advances in high-throughput genome complexity reduction sequencing provide an effective approach to the identification of sex-specific loci with both single-nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA), and a better understanding of sex chromosome dynamics in Iguanoidea. In this study, we applied Diversity Arrays Technology (DArTseqTM) in 29 phenotypic sex assignments (14 males and 15 females) of green iguana (Iguana iguana). We confirmed a male heterogametic (XX/XY) sex determination mode in this species, identifying 29 perfectly sex-linked SNP/PA loci and 164 moderately sex-linked SNP/PA loci, providing evidence probably indicative of XY recombination. Three loci from among the perfectly sex-linked SNP/PA loci showed partial homology with several amniote sex chromosomal linkages. The results support the hypothesis of an ancestral super-sex chromosome with overlaps of partial sex-chromosomal linkages. However, only one locus among the moderately sex-linked loci showed homology with GGA15, which suggests that the specific region homologous to GGA15 was located outside the non-recombination region but in close proximity to this region of the sex chromosome in green iguana. Therefore, the location of GGA15 might be further from the putative sex-determination locus in green iguana. This is a paradigm shift in understanding linkages on homomorphic X and Y sex chromosomes. The DArTseq platform provides an easy-to-use strategy for future research on the evolution of sex chromosomes in Iguanoidea, particularly for non-model species with homomorphic or highly cryptic sex chromosomes.
Collapse
Affiliation(s)
- Tassika Koomgun
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | | | - Siwapech Sillapaprayoon
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Prateep Duengkae
- Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics, Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studies in Tropical Natural Resources, National Research University, Kasetsart University, Bangkok, Thailand.,Center of Excellence on Agricultural Biotechnology, Bangkok, Thailand.,Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University, Bangkok, Thailand
| |
Collapse
|