1
|
Oliver TE, Kusumpa S, Lutz LJ, McClung JP, McClung HL. Improved Diet Quality in Elite and Entry-Level Military Women Compared With Civilian-Matched Counterparts. Curr Dev Nutr 2025; 9:104517. [PMID: 39810901 PMCID: PMC11732437 DOI: 10.1016/j.cdnut.2024.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Background Dietary intake is a modifiable factor linked to short-term and long-term health. The Healthy Eating Index (HEI) is an objective measure to assess diet quality and population-level comparisons, like military to civilian. Objectives This study aimed to characterize diet quality of early-career and mid-career female soldiers compared with that of age-matches and sex-matched civilians and to link indicators of cardiometabolic disease risk to dietary outcomes and health status. Methods This is a retrospective, cross-sectional assessment of HEI-2020 scores with cardiometabolic profiles of female elite warfighters (FEWs) and basic combat trainees using Block food frequency questionnaires and blood biomarkers. FEW (n = 13; 30 ± 6 y, mean ± SD) and graduates of elite combat training and basic combat training (BCT; n = 150, 21 ± 4 y) from Ft. Sill, Oklahoma, with stratified (time, sex, and age) civilian data (NHANES) were compared. The Mann-Whitney-Wilcoxon rank sum and Kruskal-Wallis tests were used to assess group differences. Weights, strata, and primary sampling units were used to account for NHANES sampling design, with FEW and BCT subjects assigned a weight, strata, and primary sampling unit of 1. Nonplausible reporters identified as women reporting an energy intake of <300 or > 4500 kcal/d were excluded from the analysis. Results Mean HEI-2020 scores were greater in both FEW and BCT than those in NHANES groups (FEW: 67 ± 11 compared with 48 ± 15; pre-BCT: 60 ± 12 and post-BCT: 68 ± 11 compared with 50 ± 13). Diet quality for military groups were greater in 11 of the 13 HEI components than those for NHANES groups. Biomarkers associated with cardiometabolic disease risk (lipid profile, glucose, and insulin) improved in FEW and BCT compared with that in NHANES groups. Conclusions FEW consumes a healthier diet than BCT and civilian women. Outcomes suggest the military nutrition environment promotes female warfighter health and warrants further research for understanding the impact of diet associated with long-term health outcomes.
Collapse
Affiliation(s)
- Tyler E Oliver
- United States Army Research Institute of Environmental Medicine (USARIEM), Military Performance Division, Natick, MA, United States
| | - Soothesuk Kusumpa
- United States Army Research Institute of Environmental Medicine (USARIEM), Military Performance Division, Natick, MA, United States
- Oak Ridge Institute of Science and Education (ORISE), Oakridge, TN, United States
| | - Laura J Lutz
- USARIEM, Military Nutrition Division, Natick, MA, United States
| | - James P McClung
- USARIEM, Military Nutrition Division, Natick, MA, United States
| | - Holly L McClung
- United States Army Research Institute of Environmental Medicine (USARIEM), Military Performance Division, Natick, MA, United States
| |
Collapse
|
2
|
Jaguri A, Al Thani AA, Elrayess MA. Exercise Metabolome: Insights for Health and Performance. Metabolites 2023; 13:694. [PMID: 37367852 DOI: 10.3390/metabo13060694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Exercise has many benefits for physical and mental well-being. Metabolomics research has allowed scientists to study the impact of exercise on the body by analyzing metabolites released by tissues such as skeletal muscle, bone, and the liver. Endurance training increases mitochondrial content and oxidative enzymes, while resistance training increases muscle fiber and glycolytic enzymes. Acute endurance exercise affects amino acid metabolism, fat metabolism, cellular energy metabolism, and cofactor and vitamin metabolism. Subacute endurance exercise alters amino acid metabolism, lipid metabolism, and nucleotide metabolism. Chronic endurance exercise improves lipid metabolism and changes amino acid metabolism. Acute resistance exercise changes several metabolic pathways, including anaerobic processes and muscular strength. Chronic resistance exercise affects metabolic pathways, resulting in skeletal muscle adaptations. Combined endurance-resistance exercise alters lipid metabolism, carbohydrate metabolism, and amino acid metabolism, increasing anaerobic metabolic capacity and fatigue resistance. Studying exercise-induced metabolites is a growing field, and further research can uncover the underlying metabolic mechanisms and help tailor exercise programs for optimal health and performance.
Collapse
Affiliation(s)
- Aayami Jaguri
- Weill Cornell Medicine-Qatar, Doha P.O. Box 24811, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Moderate-intensity continuous training has time-specific effects on the lipid metabolism of adolescents. J Transl Int Med 2023; 11:57-69. [DOI: 10.2478/jtim-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
Background and Objectives
Moderate-intensity continuous training (MICT) is used to observe lipidomic effects in adults. However, the efects of MICT on lipid metabolism in adolescents remain unclear. Therefore, we aimed to longitudinally characterize the lipid profile in adolescents during different periods of 6-week MICT.
Methods
Fifteen adolescents undertook bicycle training at 65% of maximal oxygen consumption. Plasma samples were collected at four time points (T0, T1, T2, and T3). Targeted lipidomics was assessed by ultra-performance liquid chromatography–tandem mass spectrometry to characterize the plasma lipid profiles of the participants to identify the lipids present at differing concentrations and changes in lipid species with time.
Results
MICT afected the plasma lipid profiles of the adolescents. The concentrations of diglycerides, phosphatidylinositol, lysophosphatidic acid, lysophosphatidylcholine, and lysophosphatidylethanolamine were increased at T1, decreased at T2, and increased again at T3. Fatty acids (FAs) showed an opposite trend. Ether-linked alkylphosphatidylcholine and triglycerides were significantly increased and remained high. Sphingolipid concentrations initially decreased and then remained low. Therefore, a single bout of exercise had substantial efects on lipid metabolism, but by T3, fewer lipid species were present at significantly diferent concentrations and the magnitudes of the remaining diferences were smaller than those at earlier times. Among all the changed lipids, only DG(14:1/18:1), HexCer(d18:1/22:1) and FA(22:0) showed no significant correlations with any other 51 lipids (P < 0.05). Glycerides and phospholipids showed positive correlations with each other (P < 0.05), but FAs were significantly negatively correlated with glycerides and phospholipids while positively with other FAs (P < 0.05). Pathway enrichment analysis showed that 50% of the metabolic pathways represented were related to lipid metabolism and lipid biosynthesis.
Conclusion
MICT increases ether-linked alkylphosphatidylcholine and triglyceride concentrations. Diglyceride, phosphatidylinositol, and lysophosphatidylcholine concentrations initially rise and then decrease 6 weeks after MICT, but FA concentrations show an opposite trend. These changes might correlate with lipid metabolism or biosynthesis pathways.
Collapse
|
4
|
Kadyrov M, Whiley L, Brown B, Erickson KI, Holmes E. Associations of the Lipidome with Ageing, Cognitive Decline and Exercise Behaviours. Metabolites 2022; 12:metabo12090822. [PMID: 36144226 PMCID: PMC9505967 DOI: 10.3390/metabo12090822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most recognisable features of ageing is a decline in brain health and cognitive dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-related cognitive decline, there is a lack of effective methods to improve the health of the ageing brain. In light of this, exercise has shown promise for positively influencing neurocognitive health and associated lipid profiles. This review summarises age-related changes in several lipid classes that are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols, and explores the consequences of age-associated pathological cognitive decline on these lipid classes. Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism and prevent cognitive decline in later life.
Collapse
Affiliation(s)
- Maria Kadyrov
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Belinda Brown
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA 6009, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL 32804, USA
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Correspondence: (M.K.); (B.B.); (E.H.)
| |
Collapse
|
5
|
(Low) Energy Availability and Its Association with Injury Occurrence in Competitive Dance: Cross-Sectional Analysis in Female Dancers. Medicina (B Aires) 2022; 58:medicina58070853. [PMID: 35888572 PMCID: PMC9319529 DOI: 10.3390/medicina58070853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives: The risk of low energy availability is related to various health problems in sports. This cross-sectional study aimed to identify a possible association between various dance factors, anthropometrics/body build, and energy availability with injury occurrence in contemporary dancers. Materials and Methods: The participants were 50 female competitive dancers (19.8 ± 4.1 years of age). The independent variables included age, dance factors (amount of training and competitions per week–exposure time, experience in dance), anthropometrics/body composition (body height, mass, BMI, body fat percentage (BF%), and fat-free mass (FFM)), and energy availability score (EAS; evaluated by accelerometer-based measurement of energy expenditure and Dance Energy Availability Questionnaires). The dependent variables were the occurrence of (i) soft-tissue injuries and (ii) bone injuries. The measurements were obtained by experienced technicians during the pre-competition period for each specific dance discipline. Univariate and multivariate logistic regressions were calculated to identify the associations between independent variables and injury prevalence. Results: The results showed that EAS (OR = 0.81, 95% CI:0.65–0.91), age (OR = 1.65, 95% CI: 1.1–2.46), higher BF% (OR = 1.23, 95% CI: 1.04–1.46) and BMI (OR = 1.61, 95% CI: 1.05–2.47) were correlated with soft-tissue injuries. Dancers who suffered from bone injuries reported higher exposure time (OR = 1.21, 95% CI: 1.05–1.37) and had lower values of FFM (OR = 0.73, 95% CI: 0.56–0.98). Multivariate regression analyses evidenced a higher likelihood of soft-tissue injuries in older dancers (OR = 1.75, 95% CI: 1.21–2.95) and the ones who had lower EAS (OR = 0.84, 95% CI: 0.71–0.95) while the exposure time was associated with a higher likelihood of bone injuries (OR = 1.21, 95% CI: 1.05–1.39). Conclusions: In order to decrease the injury prevalence among dancers, special attention should be paid to maintaining adequate nutrition that will provide optimal available energy for the demands of training and performing. Additionally, the control of training volume should be considered in order to reduce traumatic bone injuries.
Collapse
|
6
|
Khoramipour K, Sandbakk Ø, Keshteli AH, Gaeini AA, Wishart DS, Chamari K. Metabolomics in Exercise and Sports: A Systematic Review. Sports Med 2021; 52:547-583. [PMID: 34716906 DOI: 10.1007/s40279-021-01582-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metabolomics is a field of omics science that involves the comprehensive measurement of small metabolites in biological samples. It is increasingly being used to study exercise physiology and exercise-associated metabolism. However, the field of exercise metabolomics has not been extensively reviewed or assessed. OBJECTIVE This review on exercise metabolomics has three aims: (1) to provide an introduction to the general workflow and the different metabolomics technologies used to conduct exercise metabolomics studies; (2) to provide a systematic overview of published exercise metabolomics studies and their findings; and (3) to discuss future perspectives in the field of exercise metabolomics. METHODS We searched electronic databases including Google Scholar, Science Direct, PubMed, Scopus, Web of Science, and the SpringerLink academic journal database between January 1st 2000 and September 30th 2020. RESULTS Based on our detailed analysis of the field, exercise metabolomics studies fall into five major categories: (1) exercise nutrition metabolism; (2) exercise metabolism; (3) sport metabolism; (4) clinical exercise metabolism; and (5) metabolome comparisons. Exercise metabolism is the most popular category. The most common biological samples used in exercise metabolomics studies are blood and urine. Only a small minority of exercise metabolomics studies employ targeted or quantitative techniques, while most studies used untargeted metabolomics techniques. In addition, mass spectrometry was the most commonly used platform in exercise metabolomics studies, identified in approximately 54% of all published studies. Our data indicate that biomarkers or biomarker panels were identified in 34% of published exercise metabolomics studies. CONCLUSION Overall, there is an increasing trend towards better designed, more clinical, mass spectrometry-based metabolomics studies involving larger numbers of participants/patients and larger numbers of metabolites being identified.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Medical Faculty, Kerman University of Medical Sciences, Blvd. 22 Bahman, Kerman, Iran.
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Abbas Ali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Computing Science, University of Alberta, AB, T6G 2E9, Edmonton, Canada
| | - Karim Chamari
- ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
7
|
The Importance of Lipidomic Approach for Mapping and Exploring the Molecular Networks Underlying Physical Exercise: A Systematic Review. Int J Mol Sci 2021; 22:ijms22168734. [PMID: 34445440 PMCID: PMC8395903 DOI: 10.3390/ijms22168734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Maintaining appropriate levels of physical exercise is an optimal way for keeping a good state of health. At the same time, optimal exercise performance necessitates an integrated organ system response. In this respect, physical exercise has numerous repercussions on metabolism and function of different organs and tissues by enhancing whole-body metabolic homeostasis in response to different exercise-related adaptations. Specifically, both prolonged and intensive physical exercise produce vast changes in multiple and different lipid-related metabolites. Lipidomic technologies allow these changes and adaptations to be clarified, by using a biological system approach they provide scientific understanding of the effect of physical exercise on lipid trajectories. Therefore, this systematic review aims to indicate and clarify the identifying biology of the individual response to different exercise workloads, as well as provide direction for future studies focused on the body’s metabolome exercise-related adaptations. It was performed using five databases (Medline (PubMed), Google Scholar, Embase, Web of Science, and Cochrane Library). Two author teams reviewed 105 abstracts for inclusion and at the end of the screening process 50 full texts were analyzed. Lastly, 14 research articles specifically focusing on metabolic responses to exercise in healthy subjects were included. The Oxford quality scoring system scale was used as a quality measure of the reviews. Information was extracted using the participants, intervention, comparison, outcomes (PICOS) format. Despite that fact that it is well-known that lipids are involved in different sport-related changes, it is unclear what types of lipids are involved. Therefore, we analyzed the characteristic lipid species in blood and skeletal muscle, as well as their alterations in response to chronic and acute exercise. Lipidomics analyses of the studies examined revealed medium- and long-chain fatty acids, fatty acid oxidation products, and phospholipids qualitative changes. The main cumulative evidence indicates that both chronic and acute bouts of exercise determine significant changes in lipidomic profiles, but they manifested in very different ways depending on the type of tissue examined. Therefore, this systematic review may offer the possibility to fully understand the individual lipidomics exercise-related response and could be especially important to improve athletic performance and human health.
Collapse
|