1
|
Seetharaman ATM, Owens CE, Gangaraju R. Cysteinyl Leukotriene Receptor Antagonism by Montelukast to Treat Visual Deficits. J Ocul Pharmacol Ther 2024. [PMID: 39358316 DOI: 10.1089/jop.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Montelukast, a Food and Drug Administration-approved drug for asthma and allergic rhinitis modulates leukotriene (LT) receptors and serves as a critical anti-inflammatory agent. Recent research suggests that the LT signaling pathway targeted by montelukast has broader implications for diseases such as fibrosis, cardiovascular diseases, cancer, cerebrovascular disease, and immune defense. This expanded understanding highlights montelukast's potential for repurposing in conditions involving aberrant stress mechanisms, including ocular diseases marked by inflammation, oxidative stress, ER stress, and apoptosis, among several others. This review delves into montelukast's therapeutic mechanisms across various diseases, draws parallels to ocular conditions, and examines clinical trials and associated adverse effects to underscore the unmet need for cysteinyl LT receptor antagonism by montelukast as an effective therapy for visual deficits.
Collapse
Affiliation(s)
- Amritha T M Seetharaman
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Caroline E Owens
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, Anatomy & Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Liu Z, Zeinalzadeh Z, Huang T, Han Y, Peng L, Wang D, Zhou Z, Ousmane D, Wang J. Identification of endoplasmic reticulum stress-associated genes and subtypes for predicting risk signature and depicting immune features in inflammatory bowel disease. Heliyon 2024; 10:e37053. [PMID: 39296237 PMCID: PMC11409092 DOI: 10.1016/j.heliyon.2024.e37053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) becomes a significant factor in inflammatory bowel disease (IBD), like Crohn's disease (CD) and ulcerative colitis (UC). Our research was aimed at identifying molecular markers to enhance our understanding of ERS and inflammation in IBD, recognizing risk factors and high-risk groups at the molecular level, and developing a predictive model on the grounds of based on ERS-associated genes. This research adopted the least absolute shrinkage and selection operator (LASSO) regression and logistic regression to build a predictive model, and categorized IBD patients into high- and low-risk groups, and then identified four gene clusters. Our key findings included a significant increase in drug target gene expression in high-risk groups, notable discrepancies in immune levels, and functions between high-risk and low-risk groups. Notably, the TAP1 gene emerged as a strong predictor with the highest diagnostic value (area under the curve [AUC] = 0.941). TAP1 encodes proteins required for antigenic peptide transfer across the endoplasmic reticulum (ER) membrane, and its potential as a diagnostic marker and therapeutic target is reflected by its overexpression in IBD tissues. Our study established a new ERS-associated gene model which could forecast the risk, immunological status, and treatment efficacy of patients with IBD. These findings suggest potential targets for personalized therapy and highlight the significance of ERS in the etiology and therapy of IBD. Future studies should explore the therapeutic potential of targeting TAP1 and other ERS-related genes for IBD management.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Zahra Zeinalzadeh
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
3
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Meissner JM, Chmielińska A, Ofri R, Cisło-Sankowska A, Marycz K. Extracellular Vesicles Isolated from Equine Adipose-Derived Stromal Stem Cells (ASCs) Mitigate Tunicamycin-Induced ER Stress in Equine Corneal Stromal Stem Cells (CSSCs). Curr Issues Mol Biol 2024; 46:3251-3277. [PMID: 38666934 PMCID: PMC11048834 DOI: 10.3390/cimb46040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Corneal ulcers, characterized by severe inflammation of the cornea, can lead to serious, debilitating complications and may be vision-threatening for horses. In this study, we aimed to investigate the role of endoplasmic reticulum (ER) stress in corneal stem progenitor cell (CSSC) dysfunction and explore the potential of equine adipose-derived stromal stem cell (ASC)-derived extracellular vesicles (EVs) to improve corneal wound healing. We showed that CSSCs expressed high levels of CD44, CD45, and CD90 surface markers, indicating their stemness. Supplementation of the ER-stress-inducer tunicamycin to CSSCs resulted in reduced proliferative and migratory potential, accumulation of endoplasmic reticulum (ER)-stressed cells in the G0/G1 phase of the cell cycle, increased expression of proinflammatory genes, induced oxidative stress and sustained ER stress, and unfolded protein response (UPR). Importantly, treatment with EVs increased the proliferative activity and number of cells in the G2/Mitosis phase, enhanced migratory ability, suppressed the overexpression of proinflammatory cytokines, and upregulated the anti-inflammatory miRNA-146a-5p, compared to control and/or ER-stressed cells. Additionally, EVs lowered the expression of ER-stress master regulators and effectors (PERK, IRE1, ATF6, and XBP1), increased the number of mitochondria, and reduced the expression of Fis-1 and Parkin, thereby promoting metabolic homeostasis and protecting against apoptosis in equine CSSCs. Our findings demonstrate that MSCs-derived EVs represent an innovative and promising therapeutic strategy for the transfer of bioactive mediators which regulate various cellular and molecular signaling pathways.
Collapse
Affiliation(s)
- Justyna M. Meissner
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland;
| | - Aleksandra Chmielińska
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel;
| | - Anna Cisło-Sankowska
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland;
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95516, USA
| |
Collapse
|
5
|
Leonardi A, Donato A, Rosani U, Di Stefano A, Cavarzeran F, Brun P. Endoplasmic Reticulum Stress and Unfolded Protein Response in Vernal Keratoconjunctivitis. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 38597723 PMCID: PMC11008754 DOI: 10.1167/iovs.65.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Purpose Vernal keratoconjunctivitis (VKC) is an ocular allergic disease characterized by a type 2 inflammation, tissue remodeling, and low quality of life for the affected patients. We investigated the involvement of endoplasmic reticulum (ER) stress and unfolded protein response in VKC. Methods Conjunctival imprints from VKC patients and normal subjects (CTs) were collected, and RNA was isolated, reverse transcribed, and analyzed with the Affymetrix microarray. Differentially expressed genes between VKC patients and CTs were evaluated. Genes related to ER stress, apoptosis, and autophagy were further considered. VKC and CT conjunctival biopsies were analyzed by immunohistochemistry (IHC) with specific antibodies against unfolded protein response (UPR), apoptosis, and inflammation. Conjunctival fibroblast and epithelial cell cultures were exposed to the conditioned medium of activated U937 monocytes and analyzed by quantitative PCR for the expression of UPR, apoptosis, autophagy, and inflammatory markers. Results ER chaperones HSPA5 (GRP78/BiP) and HYOU1 (GRP170) were upregulated in VKC patients compared to CTs. Genes encoding for ER transmembrane proteins, PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), ER-associated degradation (ERAD), and autophagy were upregulated, but not those related to apoptosis. Increased positive reactivity of BiP and ATF6 and unchanged expression of apoptosis markers were confirmed by IHC. Cell cultures in stress conditions showed an overexpression of UPR, proinflammatory, apoptosis, and autophagy markers. Conclusions A significant overexpression of genes encoding for ER stress, UPR, and pro-inflammatory pathway components was reported for VKC. Even though these pathways may lead to ER homeostasis, apoptosis, or inflammation, ER stress in VKC may predominantly contribute to promote inflammation.
Collapse
Affiliation(s)
- Andrea Leonardi
- Ophthalmology Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Alice Donato
- Histology Unit, Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, Istituto Scientifico di Veruno, Veruno, Italy
| | - Fabiano Cavarzeran
- Ophthalmology Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Paola Brun
- Histology Unit, Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Martinez-Carrasco R, Fini ME. Dynasore Protects Corneal Epithelial Cells Subjected to Hyperosmolar Stress in an In Vitro Model of Dry Eye Epitheliopathy. Int J Mol Sci 2023; 24:ijms24054754. [PMID: 36902183 PMCID: PMC10003680 DOI: 10.3390/ijms24054754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Epitheliopathy at the ocular surface is a defining sign of dry eye disease, a common disorder that affects 10% to 30% of the world's population. Hyperosmolarity of the tear film is one of the main drivers of pathology, with subsequent endoplasmic reticulum (ER) stress, the resulting unfolded protein response (UPR), and caspase-3 activation implicated in the pathway to programmed cell death. Dynasore, is a small molecule inhibitor of dynamin GTPases that has shown therapeutic effects in a variety of disease models involving oxidative stress. Recently we showed that dynasore protects corneal epithelial cells exposed to the oxidant tBHP, by selective reduction in expression of CHOP, a marker of the UPR PERK branch. Here we investigated the capacity of dynasore to protect corneal epithelial cells subjected to hyperosmotic stress (HOS). Similar to dynasore's capacity to protect against tBHP exposure, dynasore inhibits the cell death pathway triggered by HOS, protecting against ER stress and maintaining a homeostatic level of UPR activity. However, unlike with tBHP exposure, UPR activation due to HOS is independent of PERK and mostly driven by the UPR IRE1 branch. Our results demonstrate the role of the UPR in HOS-driven damage, and the potential of dynasore as a treatment to prevent dry eye epitheliopathy.
Collapse
Affiliation(s)
- Rafael Martinez-Carrasco
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence: (R.M.-C.); (M.E.F.)
| | - M. Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Correspondence: (R.M.-C.); (M.E.F.)
| |
Collapse
|
8
|
Yao M, Pu PM, Li ZY, Zhu K, Zhou LY, Sun YL, Dai YX, Cui XJ, Wang YJ. Melatonin restores endoplasmic reticulum homeostasis to protect injured neurons in a rat model of chronic cervical cord compression. J Pineal Res 2023; 74:e12859. [PMID: 36732085 DOI: 10.1111/jpi.12859] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Cervical spondylotic myelopathy (CSM) refers to a chronic injury of the cervical cord caused by cervical intervertebral disc degeneration. Endoplasmic reticulum (ER) homeostasis is essential to counteract neuronal apoptosis. ER stress, an integral part of ER homeostasis, was observed in a rat model of chronic cervical cord compression in our previous study. However, the correlation between ER homeostasis and CSM remains unknown. The antioxidant melatonin is known to exert therapeutic effects in acute spinal cord injury, but the specific effects and their potential mechanisms in the pathological processes of CSM require further exploration. The present study hypothesized that ER homeostasis is essential for neuronal apoptosis in the CSM and that melatonin maintains this homeostasis. The results showed that ER stress led to neuronal apoptosis in rats with chronic cervical cord compression. Conversely, melatonin attenuates protein kinase R-like ER kinase-eukaryotic initiation factor 2α-C/EBP-homologous protein, inositol-requiring enzyme 1, and transcription factor 6 signaling pathways to release ER stress and prevents Bax translocation to the mitochondrion, thereby promoting motor recovery and protecting neurons in vivo. It also rescued primary rat cortical neurons from ER stress-induced glutamate toxicity in vitro. Moreover, melatonin remodels the ER morphology and restores homeostasis via ER-phagy in injured neurons. FAM134B, CCPG1, RTN3, and Sec. 62 are four known ER-phagy receptors. In this study, Sec. 62 was identified as a key melatonin factor in promoting ER-phagy and restoring ER homeostasis in damaged neurons in vivo and in vitro. In conclusion, melatonin suppresses neuronal apoptosis by reducing ER stress and promoting ER-phagy to restore ER morphology and homeostasis. The current results suggested that melatonin is a promising treatment for CSM owing to its restorative effect on ER homeostasis; however, well-designed randomized controlled trials must be carried out to further investigate its clinical effects.
Collapse
Affiliation(s)
- Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zhu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu, China
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Xiang Dai
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Pugh KW, Alnaed M, Brackett CM, Blagg BSJ. The biology and inhibition of glucose-regulated protein 94/gp96. Med Res Rev 2022; 42:2007-2024. [PMID: 35861260 PMCID: PMC10003671 DOI: 10.1002/med.21915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
The 94 kDa molecular chaperone, glucose-regulated protein 94 (Grp94), has garnered interest during the last decade due to its direct association with endoplasmic reticulum (ER) stress and disease. Grp94 belongs to the Hsp90 family of molecular chaperones and is a master regulator of ER homeostasis due to its ability to fold and stabilize proteins/receptors, and to chaperone misfolded proteins for degradation. Multiple studies have demonstrated that Grp94 knockdown or inhibition leads to the degradation of client protein substrates, which leads to disruption of disease-dependent signaling pathways. As a result, small molecule inhibitors of Grp94 have become a promising therapeutic approach to target a variety of disease states. Specifically, Grp94 has proven to be a promising target for cancer, glaucoma, immune-mediated inflammation, and viral infection. Moreover, Grp94-peptide complexes have been utilized effectively as adjuvants for vaccines against a variety of disease states. This work highlights the significance of Grp94 biology and the development of therapeutics that target this molecular chaperone in multiple disease states.
Collapse
Affiliation(s)
- Kyler W. Pugh
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Marim Alnaed
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Christopher M. Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
10
|
Jin Y, Nguyen TLL, Myung CS, Heo KS. Ginsenoside Rh1 protects human endothelial cells against lipopolysaccharide-induced inflammatory injury through inhibiting TLR2/4-mediated STAT3, NF-κB, and ER stress signaling pathways. Life Sci 2022; 309:120973. [PMID: 36150463 DOI: 10.1016/j.lfs.2022.120973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIM Endothelial cell (EC) dysfunction initiates atherosclerosis by inducing inflammatory cytokines and adhesion molecules. Herein, we investigated the role of ginsenoside Rh1 (Rh1) in lipopolysaccharide (LPS)-induced EC dysfunction. MAIN METHODS The inhibitory effect of Rh1 on LPS binding to toll-like receptor 2 (TLR2) or TLR4 was evaluated using an immunofluorescence (IF) assay. Annexin V and cleaved caspase-3-positive EC apoptosis were evaluated by flow cytometry and IF assay. Western blotting and quantitative reverse transcription-PCR were performed to clarify underlying molecular mechanisms. In vivo model, effect of Rh1 on EC dysfunction was evaluated by using en face IF assay on aortas isolated C57BL/6 mice. KEY FINDING LPS (500 ng/mL) activated inflammatory signaling pathways, including ERK1/2, STAT3, and NF-κB. Interestingly, Rh1 significantly abolished the binding of LPS to TLR2 and TLR4. Consistently, Rh1 inhibited LPS-induced NF-κB activation and its downstream molecules, including inflammatory cytokines and adhesion molecules. Furthermore, Rh1 alleviated LPS-induced downregulation of eNOS promoter activity. Notably, inactivation of eNOS by 50 μM L-NAME significantly increased NF-κB promoter activity. In addition, Rh1 abolished LPS-mediated cell cycle arrest and EC apoptosis by inhibiting endoplasmic reticulum stress via PERK/CHOP/ERO1-α signaling pathway. Consistent with in vitro experimental data, Rh1 effectively suppressed LPS-induced VCAM-1 and CHOP expression and rescuing LPS-destroyed tight junctions between ECs as indicated in ZO-1 expression on mice aorta. SIGNIFICANCE Rh1 suppresses LPS-induced EC inflammation and apoptosis by inhibiting STAT3/NF-κB and endoplasmic reticulum stress signaling pathways, mediated by blocking LPS binding-to TLR2 and TLR4. Consistently, Rh1 effectively reduced EC dysfunction in vivo model.
Collapse
Affiliation(s)
- Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Chang-Seon Myung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
11
|
Perner C, Krüger E. Endoplasmic Reticulum Stress and Its Role in Homeostasis and Immunity of Central and Peripheral Neurons. Front Immunol 2022; 13:859703. [PMID: 35572517 PMCID: PMC9092946 DOI: 10.3389/fimmu.2022.859703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Neuronal cells are specialists for rapid transfer and translation of information. Their electrical properties relay on a precise regulation of ion levels while their communication via neurotransmitters and neuropeptides depends on a high protein and lipid turnover. The endoplasmic Reticulum (ER) is fundamental to provide these necessary requirements for optimal neuronal function. Accumulation of misfolded proteins in the ER lumen, reactive oxygen species and exogenous stimulants like infections, chemical irritants and mechanical harm can induce ER stress, often followed by an ER stress response to reinstate cellular homeostasis. Imbedded between glial-, endothelial-, stromal-, and immune cells neurons are constantly in communication and influenced by their local environment. In this review, we discuss concepts of tissue homeostasis and innate immunity in the central and peripheral nervous system with a focus on its influence on ER stress, the unfolded protein response, and implications for health and disease.
Collapse
Affiliation(s)
- Caroline Perner
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Zhang S, Wang K, Zhu X, Cherepanoff S, Conway RM, Madigan MC, Zhu L, Murray M, Zhou F. The unfolded protein response and the biology of uveal melanoma. Biochimie 2022; 197:9-18. [DOI: 10.1016/j.biochi.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
|
13
|
A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid. Biomolecules 2021; 11:biom11101506. [PMID: 34680139 PMCID: PMC8533820 DOI: 10.3390/biom11101506] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Pemphigus and pemphigoid diseases are potentially life-threatening autoimmune blistering disorders that are characterized by intraepithelial and subepithelial blister formation, respectively. In both disease groups, skin and/or mucosal blistering develop as a result of a disruption of intercellular adhesion (pemphigus) and cell-extracellular matrix (ECM) adhesion (pemphigoid). Given that metalloproteinases can target cell adhesion molecules, the purpose of the present study was to investigate the role of these enzymes in the pathogenesis of these bullous dermatoses. Studies examining MMPs (matrix metalloproteinases) and the ADAM (a disintegrin and metalloproteinase) family of proteases in pemphigus and pemphigoid were selected from articles published in the repository of the National Library of Medicine (MEDLINE/PubMed) and bioRxiv. Multiple phases of screening were conducted, and relevant data were extracted and tabulated, with 29 articles included in the final qualitative analysis. The majority of the literature investigated the role of specific components of the MMP family primarily in bullous pemphigoid (BP) whereas studies that focused on pemphigus were rarer. The most commonly studied metalloproteinase was MMP-9 followed by MMP-2; other MMPs included MMP-1, MMP-3, MMP-8, MMP-12 and MMP-13. Molecules related to MMPs were also included, namely, ADAM5, 8, 10, 15, 17, together with TIMP-1 and TIMP-3. The results demonstrated that ADAM10 and MMP-9 activity is necessary for blister formation in experimental models of pemphigus vulgaris (PV) and BP, respectively. The data linking MMPs to the pathogenesis of experimental BP were relatively strong but the evidence for involvement of metalloproteinases in PV was more tentative. These molecules represent potential candidates for the development of mechanism-based treatments of these blistering diseases.
Collapse
|
14
|
Study on the Mechanism of Capillary Leakage Caused by Hypoxia-Inducible Factor-1 α through Inducing High Expression of Matrix Metalloproteinase-9. JOURNAL OF ONCOLOGY 2021; 2021:9130650. [PMID: 34567119 PMCID: PMC8463177 DOI: 10.1155/2021/9130650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Purposes This study mainly explored the mechanism of capillary leakage caused by hypoxia-inducible factor-1α through inducing high expression of matrix metalloproteinase-9. Method. We established a monolayer endothelial cell model by culturing human umbilical vein endothelial cells (HUVEC) in vitro, used tumor necrosis factor (TNFα) and HIF-1α inhibitor 2-methoxyestradiol (2ME2) to act on HUVEC, and at the same time constructed siRNA-transfected HUVEC to interfere with the expression of HIF-1α. The permeability of monolayer endothelial cells was measured by transwell chamber method, the concentration of MMP-9 in the supernatant was measured by ELISA method, the expression of key molecules related to permeability (HIF- 1α, MMP-9, claudin-5, and ZO-1) was measured by RT-PCR and Western blot method, and the localization and expression of claudin-5 and ZO-1 were measured by immunofluorescence method. We searched for 7 HIF-1α hypoxia response elements within 4000 bp before the transcription start site in the MMP-9 promoter region, constructed the MMP-9 promoter-luciferase reporter gene recombinant plasmid, transfected and stimulated HUVEC with TNFα, and detected the effect of 7 hypoxia response element plasmids on the transcription activity of MMP-9 promoter. Results Under the action of TNFα, the permeability of monolayer endothelial cells increased, and the concentration of MMP-9 in the cell supernatant increased. 2ME2 and HIF-1α-siRNA transfection can improve the above situation (P < 0.05). 2ME2 and HIF-1α-siRNA transfection can inhibit the high expression of HIF-1α and MMP-9 caused by TNFα, thereby increasing the expression of claudin-5 and ZO-1 (P < 0.05). 2ME2 and HIF-1α-siRNA transfection can reduce the inhibition of TNFα on the expression of cell membrane protein claudin-5 and tight junction protein ZO-1. Element 1, element 5, and element 7 are the sites where HIF-1α interacts with MMP-9 at the transcription level. Conclusion This study shows that HIF-1α can increase the permeability of monolayer epithelial cells by inducing the high expression of MMP-9, leading to capillary leakage. Its target is at the -3798 bp, -1878 bp, and -1489 bp points of the transcription initiation site in the MMP-9 promoter region.
Collapse
|
15
|
Martinez-Carrasco R, Argüeso P, Fini ME. Membrane-associated mucins of the human ocular surface in health and disease. Ocul Surf 2021; 21:313-330. [PMID: 33775913 PMCID: PMC8328898 DOI: 10.1016/j.jtos.2021.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Mucins are a family of high molecular weight, heavily-glycosylated proteins produced by wet epithelial tissues, including the ocular surface epithelia. Densely-packed O-linked glycan chains added post-translationally confer the biophysical properties of hydration, lubrication, anti-adhesion and repulsion. Membrane-associated mucins (MAMs) are the distinguishing components of the mucosal glycocalyx. At the ocular surface, MAMs maintain wetness, lubricate the blink, stabilize the tear film, and create a physical barrier to the outside world. In addition, it is increasingly appreciated that MAMs function as cell surface receptors that transduce information from the outside to the inside of the cell. Recently, our team published a comprehensive review/perspectives article for molecular scientists on ocular surface MAMs, including previously unpublished data and analyses on two new genes MUC21 and MUC22, as well as new MAM functions and biological roles, comparing human and mouse (PMID: 31493487). The current article is a refocus for the audience of The Ocular Surface. First, we update the gene and protein information in a more concise form, and include a new section on glycosylation. Next, we discuss biological roles, with some new sections and further updating from our previous review. Finally, we provide a new chapter on MAM involvement in ocular surface disease. We end this with discussion of an emerging mechanism responsible for damage to the epithelia and their mucosal glycocalyces: the unfolded protein response (UPR). The UPR offers a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Rafael Martinez-Carrasco
- Department of Ophthalmology, Tufts University School of Medicine at New England Eye Center, Tufts Medical Center, Boston, MA, 02111, USA.
| | - Pablo Argüeso
- Department of Ophthalmology, Harvard Medical School at Schepens Eye Research Institute of Mass, Eye and Ear, Boston, MA, 02114, USA.
| | - M Elizabeth Fini
- Department of Ophthalmology, Tufts University School of Medicine at New England Eye Center, Tufts Medical Center: Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, O2111, USA.
| |
Collapse
|
16
|
Kossl J, Bohacova P, Hermankova B, Javorkova E, Zajicova A, Holan V. Antiapoptotic Properties of Mesenchymal Stem Cells in a Mouse Model of Corneal Inflammation. Stem Cells Dev 2021; 30:418-427. [PMID: 33607933 DOI: 10.1089/scd.2020.0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a population of adult stem cells that have potent immunoregulatory, anti-inflammatory, and antiapoptotic properties. In addition, they have ability to migrate to the site of inflammation or injury, where they contribute to the regeneration and healing process. For these properties, MSCs have been used as therapeutic cells in several models, including treatment of damages or disorders of the ocular surface. If the damage of the ocular surface is extensive and involves a limbal region where limbal stem cell reside, MSC therapy has been proved as the effective treatment approach. Although the anti-inflammatory properties of MSCs have been well characterized, mechanisms of antiapoptotic action of MSCs are not well recognized. Using a chemically damaged cornea in a mouse model, we showed that the injury decreases expression of the gene for antiapoptotic molecule Bcl-2 and increases the expression of proapoptotic genes Bax and p53. These changes were attenuated by local transplantation of MSCs after corneal damage. The antiapoptotic effect of MSCs was tested in an in vitro model of co-cultivation of corneal explants with MSCs. The apoptosis of corneal cells in the explants was induced by proinflammatory cytokines and was significantly inhibited in the presence of MSCs. The antiapoptotic effect of MSCs was mediated by paracrine action, as confirmed by separation of the explants in inserts or by supernatants from MSCs. In addition, MSCs decreased the expression of genes for the molecules associated with endoplasmic reticulum stress Atf4, Bip, and p21, which are associated with apoptosis. The results show that MSCs inhibit the expression of proapoptotic genes and decrease the number of apoptotic cells in the damaged corneas, and this action might be one of the mechanisms of the therapeutic action of MSCs.
Collapse
Affiliation(s)
- Jan Kossl
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Bohacova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Hermankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Javorkova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Holan
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials. Cells 2021; 10:cells10030588. [PMID: 33799995 PMCID: PMC8001847 DOI: 10.3390/cells10030588] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased retinas. This view is supported by the recent results of numerous experimental studies in different preclinical models. Here we provide an overview of the therapeutic properties of MSCs, and their use in experimental models of retinal diseases and in clinical trials.
Collapse
|
18
|
Martinez-Carrasco R, Argüeso P, Fini ME. Dynasore protects ocular surface mucosal epithelia subjected to oxidative stress by maintaining UPR and calcium homeostasis. Free Radic Biol Med 2020; 160:57-66. [PMID: 32791188 PMCID: PMC7704702 DOI: 10.1016/j.freeradbiomed.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
The mucosal epithelia of the ocular surface protect against external threats to the eye. Using a model of human stratified corneal epithelial cells with mucosal differentiation, we previously demonstrated that a small molecule inhibitor of dynamin GTPases, dynasore, prevents damage to cells and their transcellular barriers when subjected to oxidative stress. Investigating mechanisms, we now report the novel finding that dynasore acts by maintaining Ca+2 homeostasis, thereby inhibiting the PERK branch of the unfolded protein response (UPR) that promotes cell death. Dynasore was found to protect mitochondria by preventing mitochondrial permeability transition pore opening (mPTP), but, unlike reports using other systems, this was not mediated by dynamin family member DRP1. Necrostatin-1, an inhibitor of RIPK1 and lytic forms of programmed cell death, also inhibited mPTP opening and further protected the plasma membrane barrier. Significantly, necrostatin-1 did not protect the mucosal barrier. Oxidative stress increased mRNA for sXBP1, a marker of the IRE1 branch of the UPR, and CHOP, a marker of the PERK branch. It also stimulated phosphorylation of eIF2α, the upstream regulator of CHOP, as well as an increase in intracellular Ca2+. Dynasore selectively inhibited the increase in PERK branch markers, and also prevented the increase intracellular Ca2+ in response to oxidative stress. The increase in PERK branch markers were also inhibited when cells were treated with the cell permeable Ca2+ chelator, BAPTA-AM. To our knowledge, this is the first time that dynasore has been shown to have an effect on the UPR and suggests therapeutic applications.
Collapse
Affiliation(s)
- Rafael Martinez-Carrasco
- New England Eye Center of Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - M Elizabeth Fini
- New England Eye Center of Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA; Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|