1
|
Mortensen S, Kuncová S, Lormand J, Myers T, Kim SK, Lee V, Winkler W, Sondermann H. Structural and bioinformatics analyses identify deoxydinucleotide-specific nucleases and their association with genomic islands in gram-positive bacteria. Nucleic Acids Res 2025; 53:gkae1235. [PMID: 39778863 PMCID: PMC11706625 DOI: 10.1093/nar/gkae1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Dinucleases of the DEDD superfamily, such as oligoribonuclease, Rexo2 and nanoRNase C, catalyze the essential final step of RNA degradation, the conversion of di- to mononucleotides. The active sites of these enzymes are optimized for substrates that are two nucleotides long, and do not discriminate between RNA and DNA. Here, we identified a novel DEDD subfamily, members of which function as dedicated deoxydinucleases (diDNases) that specifically hydrolyze single-stranded DNA dinucleotides in a sequence-independent manner. Crystal structures of enzyme-substrate complexes reveal that specificity for DNA stems from a combination of conserved structural elements that exclude diribonucleotides as substrates. Consistently, diDNases fail to complement the loss of enzymes that act on diribonucleotides, indicating that these two groups of enzymes support distinct cellular functions. The genes encoding diDNases are found predominantly in genomic islands of Actinomycetes and Clostridia, which, together with their association with phage-defense systems, suggest potential roles in bacterial immunity.
Collapse
Affiliation(s)
- Sofia Mortensen
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Stanislava Kuncová
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Justin D Lormand
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Tanner M Myers
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wade C Winkler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Christian-Albrechts-University, 24118 Kiel, Germany
| |
Collapse
|
2
|
Xiang WL, Xiong J, Wang HY, Cai T, Shi P, Zhao QH, Tang J, Cai YM. The Bro-Xre toxin-antitoxin modules in Weissella cibaria: inducing persister cells to escape tetracycline stress by disrupting metabolism. Front Microbiol 2024; 15:1505841. [PMID: 39678910 PMCID: PMC11638225 DOI: 10.3389/fmicb.2024.1505841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Toxin-antitoxin (TA) modules are important mediators of persister cell formation in response to environmental stresses. However, the mechanisms through which persistence is controlled remain poorly understood. Weissella cibaria, a novel probiotic, can enter a persistent state upon exposure to tetracycline stress. This study found that the Bro-Xre TA modules of W. cibaria function as typical tetracycline regulators. The Bro-Xre TA modules were activated when exposed to tetracycline stress, and the released toxin Bro acted on various cellular metabolic processes, including energy, amino acid, and nucleotide metabolism. Among them, the genes related to intracellular energy pathways, such as PTS, EMP, HMP, TCA, and oxidative phosphorylation, were downregulated, leading to reduced ATP synthesis and proton motive force. This metabolic disruption resulted in cells adopting a persistent phenotype, characterized by an increase in cell length in W. cibaria. Additionally, the frequency of persister cells increased under tetracycline stress. These results provide a novel perspective for understanding the mechanism by which TA modules induce persistence in probiotics, allowing them to evade antibiotic stress through metabolic disruption.
Collapse
Affiliation(s)
- Wen-Liang Xiang
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jie Xiong
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Han-Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ting Cai
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Pei Shi
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Qiu-Huan Zhao
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jie Tang
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yi-Min Cai
- Japan International Research Center for Agricultural Science (JIRCAS), Tsukuba, Japan
| |
Collapse
|
3
|
Shutt-McCabe J, Shaik KB, Hoyles L, McVicker G. The plasmid-borne hipBA operon of Klebsiella michiganensis encodes a potent plasmid stabilization system. J Appl Microbiol 2024; 135:lxae246. [PMID: 39304528 PMCID: PMC11487325 DOI: 10.1093/jambio/lxae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
AIMS Klebsiella michiganensis is a medically important bacterium that has been subject to relatively little attention in the literature. Interrogation of sequence data from K. michiganensis strains in our collection has revealed the presence of multiple large plasmids encoding type II toxin-antitoxin (TA) systems. Such TA systems are responsible for mediating a range of phenotypes, including plasmid stability ('addiction') and antibiotic persistence. In this work, we characterize the hipBA TA locus found within the Klebsiella oxytoca species complex (KoSC). METHODS AND RESULTS The HipBA TA system is encoded on a plasmid carried by K. michiganensis PS_Koxy4, isolated from an infection outbreak. Employing viability and plasmid stability assays, we demonstrate that PS_Koxy4 HipA is a potent antibacterial toxin and that HipBA is a functional TA module contributing substantially to plasmid maintenance. Further, we provide in silico data comparing HipBA modules across the entire KoSC. CONCLUSIONS We provide the first evidence of the role of a plasmid-encoded HipBA system in stability of mobile genetic elements and analyse the presence of HipBA across the KoSC. These results expand our knowledge of both a common enterobacterial TA system and a highly medically relevant group of bacteria.
Collapse
Affiliation(s)
- Jordan Shutt-McCabe
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karimunnisa Begum Shaik
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
4
|
Zhang M, Wang X, Deng X, Zheng S, Zhang W, He JZ, Yu X, Feng M, Ye C. Viable but non-culturable state formation and resuscitation of different antibiotic-resistant Escherichia coli induced by UV/chlorine. WATER RESEARCH 2024; 261:122011. [PMID: 38959654 DOI: 10.1016/j.watres.2024.122011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
The presence of "viable but nonculturable" (VBNC) state and bacterial antibiotic resistance (BAR) both pose significant threats to the safety of drinking water. However, limited data was available that explicitly addressed the contribution of bacterial VBNC state in the maintenance and propagation of BAR. Here, the VBNC state induction and resuscitation of two antibiotic-resistant Escherichia coli K12 strains, one carrying multidrug-resistant plasmid (RP4 E. coli) and the other with chromosomal mutation (RIF E. coli) were characterized by subjecting them to different doses of UV/chlorine. The results illustrated that the induction, resuscitation, and associated mechanisms of VBNC ARB exhibit variations based on resistance determinants. RP4 E. coli exhibited a higher susceptibility to enter VBNC state compared to the RIF E. coli., and most VBNC state and resuscitated RP4 E. coli retained original antibiotic resistance. While, reverse mutation in the rpoB gene was observed in VBNC state and recovered RIF E. coli strains induced by high doses of UV/chlorine treatment, leading to the loss of rifampicin resistance. According to RT-qPCR results, ARGs conferring efflux pumps appeared to play a more significant role in the VBNC state formation of RP4 E. coli and the down-regulation of rpoS gene enhanced the speed at which this plasmid-carrying ARB entered into the dormant state. As to RIF E. coli, the induction of VBNC state was supposed to be regulated by the combination of general stress response, SOS response, stringent response, and TA system. Above all, this study highlights that ARB could become VBNC state during UV/chlorine treatments and retain, in some cases, their ability to spread ARGs. Importantly, compared with chromosomal mutation-mediated ARB, both VBNC and resuscitated state ARB that carries multidrug-resistant plasmids poses more serious health risks. Our study provides insights into the relationship between the VBNC state and the propagation of BAR in drinking water systems.
Collapse
Affiliation(s)
- Menglu Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350117, China
| | - Xuansen Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350117, China
| | - Xiaofeng Deng
- Fujian Minhuan Testing and Inspection Co., Fuzhou 350000, China
| | - Suxia Zheng
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350117, China
| | - Ji-Zheng He
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350117, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Chengsong Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
5
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
6
|
Wood WN, Rubio MA, Leiva LE, Phillips GJ, Ibba M. Methionyl-tRNA synthetase synthetic and proofreading activities are determinants of antibiotic persistence. Front Microbiol 2024; 15:1384552. [PMID: 38601944 PMCID: PMC11004401 DOI: 10.3389/fmicb.2024.1384552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Bacterial antibiotic persistence is a phenomenon where bacteria are exposed to an antibiotic and the majority of the population dies while a small subset enters a low metabolic, persistent, state and are able to survive. Once the antibiotic is removed the persistent population can resuscitate and continue growing. Several different molecular mechanisms and pathways have been implicated in this phenomenon. A common mechanism that may underly bacterial antibiotic persistence is perturbations in protein synthesis. To investigate this mechanism, we characterized four distinct metG mutants for their ability to increase antibiotic persistence. Two metG mutants encode changes near the catalytic site of MetRS and the other two mutants changes near the anticodon binding domain. Mutations in metG are of particular interest because MetRS is responsible for aminoacylation both initiator tRNAMet and elongator tRNAMet indicating that these mutants could impact translation initiation and/or translation elongation. We observed that all the metG mutants increased the level of antibiotic persistence as did reduced transcription levels of wild type metG. Although, the MetRS variants did not have an impact on MetRS activity itself, they did reduce translation rates. It was also observed that the MetRS variants affected the proofreading mechanism for homocysteine and that these mutants' growth is hypersensitive to homocysteine. Taken together with previous findings, our data indicate that both reductions in cellular Met-tRNAMet synthetic capacity and reduced proofreading of homocysteine by MetRS variants are positive determinants for bacterial antibiotic persistence.
Collapse
Affiliation(s)
- Whitney N. Wood
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Miguel Angel Rubio
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Lorenzo Eugenio Leiva
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, IA, United States
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| |
Collapse
|
7
|
Orel N, Fadeev E, Herndl GJ, Turk V, Tinta T. Recovering high-quality bacterial genomes from cross-contaminated cultures: a case study of marine Vibrio campbellii. BMC Genomics 2024; 25:146. [PMID: 38321410 PMCID: PMC10845552 DOI: 10.1186/s12864-024-10062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Environmental monitoring of bacterial pathogens is critical for disease control in coastal marine ecosystems to maintain animal welfare and ecosystem function and to prevent significant economic losses. This requires accurate taxonomic identification of environmental bacterial pathogens, which often cannot be achieved by commonly used genetic markers (e.g., 16S rRNA gene), and an understanding of their pathogenic potential based on the information encoded in their genomes. The decreasing costs of whole genome sequencing (WGS), combined with newly developed bioinformatics tools, now make it possible to unravel the full potential of environmental pathogens, beyond traditional microbiological approaches. However, obtaining a high-quality bacterial genome, requires initial cultivation in an axenic culture, which is a bottleneck in environmental microbiology due to cross-contamination in the laboratory or isolation of non-axenic strains. RESULTS We applied WGS to determine the pathogenic potential of two Vibrio isolates from coastal seawater. During the analysis, we identified cross-contamination of one of the isolates and decided to use this dataset to evaluate the possibility of bioinformatic contaminant removal and recovery of bacterial genomes from a contaminated culture. Despite the contamination, using an appropriate bioinformatics workflow, we were able to obtain high quality and highly identical genomes (Average Nucleotide Identity value 99.98%) of one of the Vibrio isolates from both the axenic and the contaminated culture. Using the assembled genome, we were able to determine that this isolate belongs to a sub-lineage of Vibrio campbellii associated with several diseases in marine organisms. We also found that the genome of the isolate contains a novel Vibrio plasmid associated with bacterial defense mechanisms and horizontal gene transfer, which may offer a competitive advantage to this putative pathogen. CONCLUSIONS Our study shows that, using state-of-the-art bioinformatics tools and a sufficient sequencing effort, it is possible to obtain high quality genomes of the bacteria of interest and perform in-depth genomic analyses even in the case of a contaminated culture. With the new isolate and its complete genome, we are providing new insights into the genomic characteristics and functional potential of this sub-lineage of V. campbellii. The approach described here also highlights the possibility of recovering complete bacterial genomes in the case of non-axenic cultures or obligatory co-cultures.
Collapse
Affiliation(s)
- Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| |
Collapse
|
8
|
Mason G, Footer MJ, Rojas ER. Mechanosensation induces persistent bacterial growth during bacteriophage predation. mBio 2023; 14:e0276622. [PMID: 37909775 PMCID: PMC10746221 DOI: 10.1128/mbio.02766-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria and bacteriophage form one of the most important predator-prey relationships on earth, yet how the long-term stability of this ecological interaction is achieved is unclear. Here, we demonstrate that Escherichia coli can rapidly grow during bacteriophage predation if they are doing so in spatially confined environments. This discovery revises our understanding of bacteria-bacteriophage population dynamics in many real-world environments where bacteria grow in confinement, such as the gut and the soil. Additionally, this result has clear implications for the potential of bacteriophage therapy and the role of mechanosensation during bacterial pathogenesis.
Collapse
Affiliation(s)
- Guy Mason
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Matthew J. Footer
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Enrique R. Rojas
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
9
|
Lin JD, Stogios PJ, Abe KT, Wang A, MacPherson J, Skarina T, Gingras AC, Savchenko A, Ensminger AW. Functional diversification despite structural congruence in the HipBST toxin-antitoxin system of Legionella pneumophila. mBio 2023; 14:e0151023. [PMID: 37819088 PMCID: PMC10653801 DOI: 10.1128/mbio.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Toxin-antitoxin (TA) systems are parasitic genetic elements found in almost all bacterial genomes. They are exchanged horizontally between cells and are typically poorly conserved across closely related strains and species. Here, we report the characterization of a tripartite TA system in the bacterial pathogen Legionella pneumophila that is highly conserved across Legionella species genomes. This system (denoted HipBSTLp) is a distant homolog of the recently discovered split-HipA system in Escherichia coli (HipBSTEc). We present bioinformatic, molecular, and structural analyses of the divergence between these two systems and the functionality of this newly described TA system family. Furthermore, we provide evidence to refute previous claims that the toxin in this system (HipTLp) possesses bifunctionality as an L. pneumophila virulence protein. Overall, this work expands our understanding of the split-HipA system architecture and illustrates the potential for undiscovered biology in these abundant genetic elements.
Collapse
Affiliation(s)
- Jordan D. Lin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kento T. Abe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John MacPherson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, Alberta, Canada
| | - Alexander W. Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Berne C, Zappa S, Brun YV. eDNA-stimulated cell dispersion from Caulobacter crescentus biofilms upon oxygen limitation is dependent on a toxin-antitoxin system. eLife 2023; 12:e80808. [PMID: 36475544 PMCID: PMC9851616 DOI: 10.7554/elife.80808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In their natural environment, most bacteria preferentially live as complex surface-attached multicellular colonies called biofilms. Biofilms begin with a few cells adhering to a surface, where they multiply to form a mature colony. When conditions deteriorate, cells can leave the biofilm. This dispersion is thought to be an important process that modifies the overall biofilm architecture and that promotes colonization of new environments. In Caulobacter crescentus biofilms, extracellular DNA (eDNA) is released upon cell death and prevents newborn cells from joining the established biofilm. Thus, eDNA promotes the dispersal of newborn cells and the subsequent colonization of new environments. These observations suggest that eDNA is a cue for sensing detrimental environmental conditions in the biofilm. Here, we show that the toxin-antitoxin system (TAS) ParDE4 stimulates cell death in areas of a biofilm with decreased O2 availability. In conditions where O2 availability is low, eDNA concentration is correlated with cell death. Cell dispersal away from biofilms is decreased when parDE4 is deleted, probably due to the lower local eDNA concentration. Expression of parDE4 is positively regulated by O2 and the expression of this operon is decreased in biofilms where O2 availability is low. Thus, a programmed cell death mechanism using an O2-regulated TAS stimulates dispersal away from areas of a biofilm with decreased O2 availability and favors colonization of a new, more hospitable environment.
Collapse
Affiliation(s)
- Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| |
Collapse
|
11
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
12
|
Chuan J, Belov A, Cloutier M, Li X, Khan IUH, Chen W. Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BMC Genomics 2022; 23:471. [PMID: 35761183 PMCID: PMC9235176 DOI: 10.1186/s12864-022-08663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Emerging pathogenic bacteria are an increasing threat to public health. Two recently described species of the genus Aliarcobacter, A. faecis and A. lanthieri, isolated from human or livestock feces, are closely related to Aliarcobacter zoonotic pathogens (A. cryaerophilus, A. skirrowii, and A. butzleri). In this study, comparative genomics analysis was carried out to examine the virulence-related, including virulence, antibiotic, and toxin (VAT) factors in the reference strains of A. faecis and A. lanthieri that may enable them to become potentially opportunistic zoonotic pathogens.
Results
Our results showed that the genomes of the reference strains of both species have flagella genes (flaA, flaB, flgG, flhA, flhB, fliI, fliP, motA and cheY1) as motility and export apparatus, as well as genes encoding the Twin-arginine translocation (Tat) (tatA, tatB and tatC), type II (pulE and pulF) and III (fliF, fliN and ylqH) secretory pathways, allowing them to secrete proteins into the periplasm and host cells. Invasion and immune evasion genes (ciaB, iamA, mviN, pldA, irgA and fur2) are found in both species, while adherence genes (cadF and cj1349) are only found in A. lanthieri. Acid (clpB), heat (clpA and clpB), osmotic (mviN), and low-iron (irgA and fur2) stress resistance genes were observed in both species, although urease genes were not found in them. In addition, arcB, gyrA and gyrB were found in both species, mutations of which may mediate the resistance to quaternary ammonium compounds (QACs). Furthermore, 11 VAT genes including six virulence (cadF, ciaB, irgA, mviN, pldA, and tlyA), two antibiotic resistance [tet(O) and tet(W)] and three cytolethal distending toxin (cdtA, cdtB, and cdtC) genes were validated with the PCR assays. A. lanthieri tested positive for all 11 VAT genes. By contrast, A. faecis showed positive for ten genes except for cdtB because no PCR assay for this gene was available for this species.
Conclusions
The identification of the virulence, antibiotic-resistance, and toxin genes in the genomes of A. faecis and A. lanthieri reference strains through comparative genomics analysis and PCR assays highlighted the potential zoonotic pathogenicity of these two species. However, it is necessary to extend this study to include more clinical and environmental strains to explore inter-species and strain-level genetic variations in virulence-related genes and assess their potential to be opportunistic pathogens for animals and humans.
Collapse
|
13
|
Genome mining of Burkholderia ambifaria strain T16, a rhizobacterium able to produce antimicrobial compounds and degrade the mycotoxin fusaric acid. World J Microbiol Biotechnol 2022; 38:114. [PMID: 35578144 DOI: 10.1007/s11274-022-03299-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Burkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives. In this study, the complete genome of B. ambifaria T16 was sequenced and analyzed to identify genes involved in survival and competition in the rhizosphere, plant growth promotion, fungal growth inhibition, and degradation of aromatic compounds. The genomic analysis revealed the presence of several operons for the biosynthesis of antimicrobial compounds, such as pyrrolnitrin, ornibactin, occidiofungin and the membrane-associated AFC-BC11. These compounds were also detected in bacterial culture supernatants by mass spectrometry analysis. In addition, this strain has multiple genes contributing to its plant growth-promoting profile, including those for acetoin, 2,3-butanediol and indole-3-acetic acid production, siderophores biosynthesis, and solubilisation of organic and inorganic phosphate. A pan-genomic analysis demonstrated that the genome of strain T16 possesses large gene clusters that are absent in the genomes of B. ambifaria reference strains. According to predictions, most of these clusters would be involved in aromatic compounds degradation. One genomic region, encoding flavin-dependent monooxygenases of unknown function, is proposed as a candidate responsible for fusaric acid degradation.
Collapse
|
14
|
Morawska LP, Hernandez-Valdes JA, Kuipers OP. Diversity of bet-hedging strategies in microbial communities-Recent cases and insights. WIREs Mech Dis 2022; 14:e1544. [PMID: 35266649 PMCID: PMC9286555 DOI: 10.1002/wsbm.1544] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Microbial communities are continuously exposed to unpredictable changes in their environment. To thrive in such dynamic habitats, microorganisms have developed the ability to readily switch phenotypes, resulting in a number of differently adapted subpopulations expressing various traits. In evolutionary biology, a particular case of phenotypic heterogeneity that evolved in an unpredictably changing environment has been defined as bet‐hedging. Bet‐hedging is a risk‐spreading strategy where isogenic populations stochastically (randomly) diversify their phenotypes, often resulting in maladapted individuals that suffer lower reproductive success. This fitness trade‐off in a specific environment may have a selective advantage upon the sudden environmental shift. Thus, a bet‐hedging strategy allows populations to persist in very dynamic habitats, but with a particular fitness cost. In recent years, numerous examples of phenotypic heterogeneity in different microorganisms have been observed, some suggesting bet‐hedging. Here, we highlight the latest reports concerning bet‐hedging phenomena in various microorganisms to show how versatile this strategy is within the microbial realms. This article is categorized under:Infectious Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Luiza P Morawska
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| |
Collapse
|
15
|
Grabe GJ, Giorgio RT, Hall AMJ, Morgan RML, Dubois L, Sisley TA, Rycroft JA, Hare SA, Helaine S. Auxiliary interfaces support the evolution of specific toxin-antitoxin pairing. Nat Chem Biol 2021; 17:1296-1304. [PMID: 34556858 DOI: 10.1038/s41589-021-00862-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
Toxin-antitoxin (TA) systems are a large family of genes implicated in the regulation of bacterial growth and its arrest in response to attacks. These systems encode nonsecreted toxins and antitoxins that specifically pair, even when present in several paralogous copies per genome. Salmonella enterica serovar Typhimurium contains three paralogous TacAT systems that block bacterial translation. We determined the crystal structures of the three TacAT complexes to understand the structural basis of specific TA neutralization and the evolution of such specific pairing. In the present study, we show that alteration of a discrete structural add-on element on the toxin drives specific recognition by their cognate antitoxin underpinning insulation of the three pairs. Similar to other TA families, the region supporting TA-specific pairing is key to neutralization. Our work reveals that additional TA interfaces beside the main neutralization interface increase the safe space for evolution of pairing specificity.
Collapse
Affiliation(s)
- Grzegorz J Grabe
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Rachel T Giorgio
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | | | - Laurent Dubois
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Tyler A Sisley
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julian A Rycroft
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Stephen A Hare
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
16
|
Yadav M, Rathore JS. Functional and transcriptional analysis of chromosomal encoded hipBA Xn2 type II toxin-antitoxin (TA) module from Xenorhabdus nematophila. Microb Pathog 2021; 162:105309. [PMID: 34839000 DOI: 10.1016/j.micpath.2021.105309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023]
Abstract
Xenorhabdus nematophila is an entomopathogenic bacterium that synthesizes numerous toxins and kills its larval insect host. Apart from such toxins, its genome also has a plethora of toxin-antitoxin (TA) systems. The role of TA systems in bacterial physiology is debatable; however, they are associated with maintaining bacterial genomic stability and their survival under adverse environmental conditions. Here, we explored the functionality and transcriptional regulation of the type II hipBAXn2 TA system. This TA system was identified in the genome of X. nematophila ATCC 19061, which consists of the hipAXn2 toxin gene encoding 278 amino acid residues and hipBXn2 encoding antitoxin of 135 amino acid residues. We showed that overexpression of HipAXn2 toxin reduced the growth of Escherichia coli cells in a bacteriostatic manner, and amino-acids G8, H164, N167, and S169 were key residues for this growth reduction. Promoter activity and expression profiling of the hipBAXn2 TA system was showed that transcription was induced in both E. coli as well as X. nematophila upon exposure to different stress conditions. Further, we have exhibited the binding features of HipAXn2 toxin and HipBXn2 antitoxin to their promoter. This study provides evidence for the presence of a functional and well-regulated hipBAXn2 TA system in X. nematophila.
Collapse
Affiliation(s)
- Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Yamuna Expressway, Greater Noida, Uttar Pradesh, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Yamuna Expressway, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
17
|
Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol 2021; 30:553-566. [PMID: 34836791 DOI: 10.1016/j.tim.2021.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been nearly three decades since the discovery of the first bacterial serine/threonine protein kinase (STPK). Since then, a blend of technological advances has led to the characterization of a multitude of STPKs and phosphorylation substrates in several bacterial species that finely regulate intricate signaling cascades. Years of intense research from several laboratories have demonstrated unexpected roles for serine/threonine phosphorylation, regulating not only bacterial growth and cell division but also antibiotic persistence, virulence and infection, metabolism, chromosomal biology, and cellular differentiation. This review aims to provide an account of the most recent and significant developments in this up and growing field in microbiology.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Cassandra Lenoir
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
18
|
Rapp JZ, Sullivan MB, Deming JW. Divergent Genomic Adaptations in the Microbiomes of Arctic Subzero Sea-Ice and Cryopeg Brines. Front Microbiol 2021; 12:701186. [PMID: 34367102 PMCID: PMC8339730 DOI: 10.3389/fmicb.2021.701186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Subzero hypersaline brines are liquid microbial habitats within otherwise frozen environments, where concentrated dissolved salts prevent freezing. Such extreme conditions presumably require unique microbial adaptations, and possibly altered ecologies, but specific strategies remain largely unknown. Here we examined prokaryotic taxonomic and functional diversity in two seawater-derived subzero hypersaline brines: first-year sea ice, subject to seasonally fluctuating conditions; and ancient cryopeg, under relatively stable conditions geophysically isolated in permafrost. Overall, both taxonomic composition and functional potential were starkly different. Taxonomically, sea-ice brine communities (∼105 cells mL–1) had greater richness, more diversity and were dominated by bacterial genera, including Polaribacter, Paraglaciecola, Colwellia, and Glaciecola, whereas the more densely inhabited cryopeg brines (∼108 cells mL–1) lacked these genera and instead were dominated by Marinobacter. Functionally, however, sea ice encoded fewer accessory traits and lower average genomic copy numbers for shared traits, though DNA replication and repair were elevated; in contrast, microbes in cryopeg brines had greater genetic versatility with elevated abundances of accessory traits involved in sensing, responding to environmental cues, transport, mobile elements (transposases and plasmids), toxin-antitoxin systems, and type VI secretion systems. Together these genomic features suggest adaptations and capabilities of sea-ice communities manifesting at the community level through seasonal ecological succession, whereas the denser cryopeg communities appear adapted to intense bacterial competition, leaving fewer genera to dominate with brine-specific adaptations and social interactions that sacrifice some members for the benefit of others. Such cryopeg genomic traits provide insight into how long-term environmental stability may enable life to survive extreme conditions.
Collapse
Affiliation(s)
- Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States.,Department of Microbiology, Ohio State University, Columbus, OH, United States.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States.,Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Deacylated tRNA Accumulation Is a Trigger for Bacterial Antibiotic Persistence Independent of the Stringent Response. mBio 2021; 12:e0113221. [PMID: 34126764 PMCID: PMC8262941 DOI: 10.1128/mbio.01132-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial antibiotic persistence occurs when bacteria are treated with an antibiotic and the majority of the population rapidly dies off, but a small subpopulation enters into a dormant, persistent state and evades death. Diverse pathways leading to nucleoside triphosphate (NTP) depletion and restricted translation have been implicated in persistence, suggesting alternative redundant routes may exist to initiate persister formation. To investigate the molecular mechanism of one such pathway, functional variants of an essential component of translation (phenylalanyl-tRNA synthetase [PheRS]) were used to study the effects of quality control on antibiotic persistence. Upon amino acid limitation, elevated PheRS quality control led to significant decreases in aminoacylated tRNAPhe accumulation and increased antibiotic persistence. This increase in antibiotic persistence was most pronounced (65-fold higher) when the relA-encoded tRNA-dependent stringent response was inactivated. The increase in persistence with elevated quality control correlated with ∼2-fold increases in the levels of the RNase MazF and the NTPase MazG and a 3-fold reduction in cellular NTP pools. These data reveal a mechanism for persister formation independent of the stringent response where reduced translation capacity, as indicated by reduced levels of aminoacylated tRNA, is accompanied by active reduction of cellular NTP pools which in turn triggers antibiotic persistence. IMPORTANCE Bacterial antibiotic persistence is a transient physiological state wherein cells become dormant and thereby evade being killed by antibiotics. Once the antibiotic is removed, bacterial persisters are able to resuscitate and repopulate. It is thought that antibiotic bacterial persisters may cause reoccurring infections in the clinical setting. The molecular triggers and pathways that cause bacteria to enter into the persister state are not fully understood. Our results suggest that accumulation of deacylated tRNA is a trigger for antibiotic persistence independent of the RelA-dependent stringent response, a pathway thought to be required for persistence in many organisms. Overall, this provides a mechanism where changes in translation quality control in response to physiological cues can directly modulate bacterial persistence.
Collapse
|
20
|
Abstract
Toxin-antitoxin modules function in the genetic stability of mobile genetic elements, bacteriophage defense, and antibiotic tolerance. A gain-of-function mutation of the Escherichia coli K-12 hipBA module can induce antibiotic tolerance in a subpopulation of bacterial cells, a phenomenon known as persistence. HipA is a Ser/Thr kinase that phosphorylates and inactivates glutamyl tRNA synthetase, inhibiting cellular translation and inducing the stringent response. Additional characterized HipA homologues include HipT from pathogenic E. coli O127 and YjjJ of E. coli K-12, which are encoded by tricistronic hipBST and monocistronic operons, respectively. The apparent diversity of HipA homologues in bacterial genomes inspired us to investigate overall phylogeny. Here, we present a comprehensive phylogenetic analysis of the Hip kinases in bacteria and archaea that expands on this diversity by revealing seven novel kinase families. Kinases of one family, encoded by monocistronic operons, consist of an N-terminal core kinase domain, a HipS-like domain, and a HIRAN (HIP116 Rad5p N-terminal) domain. HIRAN domains bind single- or double-stranded DNA ends. Moreover, five types of bicistronic kinase operons encode putative antitoxins with HipS-HIRAN, HipS, γδ-resolvase, or Stl repressor-like domains. Finally, our analysis indicates that reversion of hipBA gene order happened independently several times during evolution.
Collapse
|
21
|
Ely B. Evolutionary history of Caulobacter toxin-antitoxin systems. Curr Microbiol 2021; 78:2899-2904. [PMID: 34047829 DOI: 10.1007/s00284-021-02549-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
Toxin-antitoxin (TA) systems have been studied in many bacterial genera, but a clear understanding of the evolutionary trajectory of TA operons has not emerged. To address this issue, I identified 42 distinct TA operons in three genomes that represent the three branches of the Caulobacter phylogenetic tree. The location of each operon was then examined to determine if the operon was present in eight additional Caulobacter genomes. Most of the 42 TA operons were present at the same chromosomal location in genomes that represent at least two different branches of the Caulobacter phylogenetic tree. This result indicates that the chromosomal location of TA operons is conserved over evolutionary time scales. One the other hand, there were 177 instances where a TA operon was not present at an expected chromosomal location and four instances where only the antitoxin gene was present. Thus, the variable number of TA operons found in each genome appears to be due primarily to the loss of TA operons, and the addition of new TA operons to a genome was relatively rare. An additional feature of the TA operons was that they seemed to accumulate mutations faster than the adjacent genes.
Collapse
Affiliation(s)
- Bert Ely
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
22
|
Manuse S, Shan Y, Canas-Duarte SJ, Bakshi S, Sun WS, Mori H, Paulsson J, Lewis K. Bacterial persisters are a stochastically formed subpopulation of low-energy cells. PLoS Biol 2021; 19:e3001194. [PMID: 33872303 PMCID: PMC8084331 DOI: 10.1371/journal.pbio.3001194] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/29/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
Persisters represent a small subpopulation of non- or slow-growing bacterial cells that are tolerant to killing by antibiotics. Despite their prominent role in the recalcitrance of chronic infections to antibiotic therapy, the mechanism of their formation has remained elusive. We show that sorted cells of Escherichia coli with low levels of energy-generating enzymes are better able to survive antibiotic killing. Using microfluidics time-lapse microscopy and a fluorescent reporter for in vivo ATP measurements, we find that a subpopulation of cells with a low level of ATP survives killing by ampicillin. We propose that these low ATP cells are formed stochastically as a result of fluctuations in the abundance of energy-generating components. These findings point to a general "low energy" mechanism of persister formation.
Collapse
Affiliation(s)
- Sylvie Manuse
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yue Shan
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Silvia J. Canas-Duarte
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Somenath Bakshi
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wei-Sheng Sun
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
23
|
Benler S, Yutin N, Antipov D, Rayko M, Shmakov S, Gussow AB, Pevzner P, Koonin EV. Thousands of previously unknown phages discovered in whole-community human gut metagenomes. MICROBIOME 2021; 9:78. [PMID: 33781338 PMCID: PMC8008677 DOI: 10.1186/s40168-021-01017-w] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/02/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Double-stranded DNA bacteriophages (dsDNA phages) play pivotal roles in structuring human gut microbiomes; yet, the gut virome is far from being fully characterized, and additional groups of phages, including highly abundant ones, continue to be discovered by metagenome mining. A multilevel framework for taxonomic classification of viruses was recently adopted, facilitating the classification of phages into evolutionary informative taxonomic units based on hallmark genes. Together with advanced approaches for sequence assembly and powerful methods of sequence analysis, this revised framework offers the opportunity to discover and classify unknown phage taxa in the human gut. RESULTS A search of human gut metagenomes for circular contigs encoding phage hallmark genes resulted in the identification of 3738 apparently complete phage genomes that represent 451 putative genera. Several of these phage genera are only distantly related to previously identified phages and are likely to found new families. Two of the candidate families, "Flandersviridae" and "Quimbyviridae", include some of the most common and abundant members of the human gut virome that infect Bacteroides, Parabacteroides, and Prevotella. The third proposed family, "Gratiaviridae," consists of less abundant phages that are distantly related to the families Autographiviridae, Drexlerviridae, and Chaseviridae. Analysis of CRISPR spacers indicates that phages of all three putative families infect bacteria of the phylum Bacteroidetes. Comparative genomic analysis of the three candidate phage families revealed features without precedent in phage genomes. Some "Quimbyviridae" phages possess Diversity-Generating Retroelements (DGRs) that generate hypervariable target genes nested within defense-related genes, whereas the previously known targets of phage-encoded DGRs are structural genes. Several "Flandersviridae" phages encode enzymes of the isoprenoid pathway, a lipid biosynthesis pathway that so far has not been known to be manipulated by phages. The "Gratiaviridae" phages encode a HipA-family protein kinase and glycosyltransferase, suggesting these phages modify the host cell wall, preventing superinfection by other phages. Hundreds of phages in these three and other families are shown to encode catalases and iron-sequestering enzymes that can be predicted to enhance cellular tolerance to reactive oxygen species. CONCLUSIONS Analysis of phage genomes identified in whole-community human gut metagenomes resulted in the delineation of at least three new candidate families of Caudovirales and revealed diverse putative mechanisms underlying phage-host interactions in the human gut. Addition of these phylogenetically classified, diverse, and distinct phages to public databases will facilitate taxonomic decomposition and functional characterization of human gut viromes. Video abstract.
Collapse
Affiliation(s)
- Sean Benler
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Dmitry Antipov
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004 Russia
| | - Mikhail Rayko
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004 Russia
| | - Sergey Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Ayal B. Gussow
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Pavel Pevzner
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004 Russia
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093 USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| |
Collapse
|
24
|
Abstract
Bacterial cells utilize toxin-antitoxin systems to inhibit self-reproduction, while maintaining viability, when faced with environmental challenges. The activation of the toxin is often coupled to the induction of cellular response pathways, such as the stringent response, in response to multiple stress conditions. Under these conditions, the cell enters a quiescent state referred to as dormancy or persistence. How toxin activation triggers persistence and induces a systemic stress response in the alphaproteobacteria remains unclear. Here, we report that in Caulobacter, a hipA2-encoded bacterial toxin contributes to bacterial persistence by manipulating intracellular amino acid balance. HipA2 is a serine/threonine kinase that deactivates tryptophanyl-tRNA synthetase by phosphorylation, leading to stalled protein synthesis and the accumulation of free tryptophan. An increased level of tryptophan allosterically activates the adenylyltransferase activity of GlnE that, in turn, deactivates glutamine synthetase GlnA by adenylylation. The inactivation of GlnA promotes the deprivation of glutamine in the cell, which triggers a stringent response. By screening 69 stress conditions, we find that HipBA2 responds to multiple stress signals through the proteolysis of HipB2 antitoxin by the Lon protease and the release of active HipA2 kinase, revealing a molecular mechanism that allows disparate stress conditions to be sensed and funneled into a single response pathway.IMPORTANCE To overcome various environmental challenges, bacterial cells can enter a physiologically quiescent state, known as dormancy or persistence, which balances growth and viability. In this study, we report a new mechanism by which a toxin-antitoxin system responds to harsh environmental conditions or nutrient deprivation by orchestrating a dormant state while preserving viability. The hipA2-encoded kinase functions as a toxin in Caulobacter, inducing bacterial persistence by disturbing the intracellular tryptophan-glutamine balance. A nitrogen regulatory circuit can be regulated by the intracellular level of tryptophan, which mimics the allosteric role of glutamine in this feedback loop. The HipBA2 module senses different types of stress conditions by increasing the intracellular level of tryptophan, which in turn breaks the tryptophan-glutamine balance and induces glutamine deprivation. Our results reveal a molecular mechanism that allows disparate environmental challenges to converge on a common pathway that results in a dormant state.
Collapse
|
25
|
Song S, Wood TK. Are we really studying persister cells? ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:3-7. [PMID: 32363793 DOI: 10.1111/1758-2229.12849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, JeonBuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|