Kuriiwa F, Kobayashi M, Mizukami H, Hara S. Mitochondrial toxins potentiate hydroxyl radical production in rat striatum during carbon monoxide poisoning.
J Pharmacol Sci 2021;
146:29-32. [PMID:
33858652 DOI:
10.1016/j.jphs.2021.02.008]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022] Open
Abstract
Hydroxyl radical (•OH) production in the rat striatum during carbon monoxide (CO) poisoning, which inhibits complex IV, was enhanced synergistically by malonate, a mitochondrial complex II inhibitor, but not N-methyl-4-phenylpyridinium or NaCN, complex I and IV inhibitors, respectively. No such enhancement appeared in the case of NaCN combined with malonate. Intrastriatal dopamine, which is involved in •OH production by malonate, did not synergistically enhance CO-induced •OH production. Diphenyleneiodonium, a nonselective NADPH oxidase inhibitor, partly suppressed the potentiation of CO-induced •OH production by malonate. Impairment of mitochondrial functions might potentiate oxidative stress and intensify CO toxicity in the brain.
Collapse