1
|
Xue J, Hu M, Yang J, Fang W, Yin Y. Optimization of Ultraviolet-B Treatment for Enrichment of Total Flavonoids in Buckwheat Sprouts Using Response Surface Methodology and Study on Its Metabolic Mechanism. Foods 2024; 13:3928. [PMID: 39683001 DOI: 10.3390/foods13233928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Buckwheat possesses significant nutritional content and contains different bioactive compounds, such as total flavonoids, which enhance its appeal to consumers. This study employed single-factor experiments and the response surface methodology to identify the optimal germination conditions for enhancing the total flavonoid content in buckwheat sprouts through ultraviolet-B treatment. The research showed that buckwheat sprouts germinated for 3 days at a temperature of 28.7 °C while being exposed to ultraviolet-B radiation at an intensity of 30.0 μmol·m-2·s-1 for 7.6 h per day during the germination period resulted in the highest total flavonoid content of 1872.84 μg/g fresh weight. Under these specified conditions, ultraviolet-B treatment significantly elevated the activity and gene expression levels of enzymes related to the phenylpropanoid metabolic pathway, including phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate coenzyme A ligase, and chalcone isomerase. Ultraviolet-B treatment caused oxidative damage to buckwheat sprouts and inhibited their growth, but ultraviolet-B treatment also enhanced the activity of key enzymes in the antioxidant system, such as catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase. This research provided a technical reference and theoretical support for enhancing the isoflavone content in buckwheat sprouts through ultraviolet-B treatment.
Collapse
Affiliation(s)
- Jiyuan Xue
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China
| | - Meixia Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou 225000, China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China
| |
Collapse
|
2
|
Xue J, Quan X, Yang J, Fang W, Yin Y. Study on the Mechanism of Flavonoid Enrichment in Black Soybean Sprouts by Abscisic Acid/Melatonin Under Slight Acid Treatment. Foods 2024; 13:3567. [PMID: 39593983 PMCID: PMC11593214 DOI: 10.3390/foods13223567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Plant hormones play a critical role in the physiological and biochemical mechanisms of plants, with functions such as regulating the metabolic pathways of secondary metabolite production and alleviating external stresses. In this study, the synthesis of flavonoids in black soybean sprouts was induced by slight acid combined with the plant hormones abscisic acid (ABA) and melatonin (MT). The results indicated that the contents of daidzin, genistin, daidzein, and genistein in black soybean sprouts treated with slight acid were increased by 10 μM ABA and 75 μM MT, and the total flavonoid content was significantly enhanced. Compared with the slight acid treatment, the H2O2 and malondialdehyde (MDA) contents in black soybean sprouts were increased after ABA treatment, and the black soybean sprouts were further stressed. However, the H2O2 and MDA contents in black soybean sprouts were significantly decreased after MT treatment, indicating that the stress of black soybean sprouts can be alleviated by MT. Under slight acid stress, the genes related to flavonoid synthesis in black soybean sprouts were induced by exogenous ABA, promoting the accumulation of flavonoids; under exogenous MT treatment, the activity of phenylpropanoid metabolism enzymes was significantly increased, the genes related to flavonoid synthesis were upregulated, and flavonoid synthesis was induced. These results suggest that the combination of slight acid and plant hormone treatments promotes the accumulation of flavonoid substances during the germination of black soybeans. This research lays the foundation for improving the growth conditions of black soybeans and promoting the enrichment of flavonoid substances in black soybeans.
Collapse
Affiliation(s)
- Jiyuan Xue
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China; (J.X.); (X.Q.); (W.F.)
| | - Xiaolan Quan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China; (J.X.); (X.Q.); (W.F.)
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou 225000, China;
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China; (J.X.); (X.Q.); (W.F.)
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China; (J.X.); (X.Q.); (W.F.)
| |
Collapse
|
3
|
Lan H, Wang C, Yang Z, Zhu J, Fang W, Yin Y. The Impact of Lighting Treatments on the Biosynthesis of Phenolic Acids in Black Wheat Seedlings. Foods 2024; 13:2499. [PMID: 39200426 PMCID: PMC11353367 DOI: 10.3390/foods13162499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Light, as a crucial environmental determinant, profoundly influences the synthesis of secondary metabolites in plant metabolism. This study investigated the impacts of the red light combined with ultraviolet-A (UV-A) and ultraviolet-B (UV-B) treatments on phenolic acid biosynthesis in black wheat seedlings. The results demonstrate that the red light combined with UV-A and UV-B treatments significantly enhanced the levels of phenolic acids in black wheat seedlings, at 220.4 μg/seedling and 241.5 μg/seedling, respectively. The content of bound phenolic acids in black wheat seedlings increased by 36.0% under the UV-B treatment. The application of the UV-A/UV-B treatments markedly enhanced the activities of phenylalanine ammonia-lyase, 4-coumarate CoA ligase, and cinnamate 4-hydroxylase in black wheat seedlings while also promoting the expression levels of genes related to phenolic acid synthesis. The expression levels of fructose-1,6-bisphosphate aldolase and NADP-malic enzyme related to photosynthesis were significantly upregulated. This resulted in an augmentation in the chlorophyll content, thereby enhancing photosynthesis in black wheat seedlings. Nevertheless, the UV-A and UV-B treatments also had a significant constraining effect on the growth and development of black wheat seedlings. In addition, the UV-A and UV-B treatments increased the activity and gene expression levels of antioxidant enzymes while significantly increasing the contents of total flavonoids and anthocyanins, activating the antioxidant system. The findings reveal that light-source radiation serves as an effective method for promoting the biosynthesis of phenolic acids in black wheat seedlings.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China; (H.L.); (C.W.); (Z.Y.); (J.Z.); (W.F.)
| |
Collapse
|
4
|
Starič P, Remic L, Vogel-Mikuš K, Junkar I, Vavpetič P, Kelemen M, Pongrac P. Exploring the potential of cold plasma treatment followed by zinc-priming for biofortification of buckwheat sprouts. Front Nutr 2023; 10:1151101. [PMID: 37215205 PMCID: PMC10196170 DOI: 10.3389/fnut.2023.1151101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Increasing the concentration of an element in edible produce (i.e., biofortification) can mitigate the element deficiency in humans. Sprouts are small but popular part of healthy diets providing vitamins and essential elements throughout the year. Element composition of sprouts can easily be amended, e.g., by soaking the grains in element-rich solution before germination (grain-priming). In addition, pre-treatment of grains to improve element translocation from the solution into the grain may further enhance the element concentration in the sprout. Cold plasma technique could provide such solution, as it increases wettability and water uptake of grains. Grains of common buckwheat (Fogopyrum esculentum Moench) were pre-treated/ untreated with cold plasma and soaked in ZnCl2 solution/pure water. Germination tests, α-amylase activity, grain hydrophilic properties and water uptake were assessed. Element composition of grain tissues and of sprouts was assessed by micro-particle-induced-X-ray emission and X-ray fluorescence spectroscopy, respectively. Grain-priming increased Zn concentration in shoots of common buckwheat sprouts more than five-times, namely from 79 to 423 mg Zn kg-1 dry weight. Cold plasma treatment increased grain wettability and water uptake into the grain. However, cold plasma pre-treatment followed by grain-priming with ZnCl2 did not increase Zn concentration in different grain tissues or in the sprouts more than the priming alone, but rather decreased the Zn concentration in sprout shoots (average ± standard error: 216 ± 6.13 and 174 ± 7.57 mg Zn kg-1 dry weight, respectively). When the fresh weight portion of whole sprouts (i.e., of roots and shoots) was considered, comparable average requirements of Zn, namely 24.5 % and 35 % for adult men and women would be satisfied by consuming cold plasma pre-treated and not pre-treated grains. Potential advantages of cold plasma pre-treatment need to be tested further, mainly to optimize the duration of soaking required to produce Zn-enriched sprouts.
Collapse
Affiliation(s)
- Pia Starič
- Jožef Stefan Institute, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Lucija Remic
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Jožef Stefan Institute, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ita Junkar
- Jožef Stefan Institute, Ljubljana, Slovenia
| | | | | | - Paula Pongrac
- Jožef Stefan Institute, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Sodedji FAK, Ryu D, Choi J, Agbahoungba S, Assogbadjo AE, N’Guetta SPA, Jung JH, Nho CW, Kim HY. Genetic Diversity and Association Analysis for Carotenoid Content among Sprouts of Cowpea ( Vigna unguiculata L. Walp). Int J Mol Sci 2022; 23:3696. [PMID: 35409065 PMCID: PMC8998333 DOI: 10.3390/ijms23073696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
The development and promotion of biofortified foods plants are a sustainable strategy for supplying essential micronutrients for human health and nutrition. We set out to identify quantitative trait loci (QTL) associated with carotenoid content in cowpea sprouts. The contents of carotenoids, including lutein, zeaxanthin, and β-carotene in sprouts of 125 accessions were quantified via high-performance liquid chromatography. Significant variation existed in the profiles of the different carotenoids. Lutein was the most abundant (58 ± 12.8 mg/100 g), followed by zeaxanthin (14.7 ± 3.1 mg/100 g) and β-carotene (13.2 ± 2.9 mg/100 g). A strong positive correlation was observed among the carotenoid compounds (r ≥ 0.87), indicating they can be improved concurrently. The accessions were distributed into three groups, following their carotenoid profiles, with accession C044 having the highest sprout carotenoid content in a single cluster. A total of 3120 genome-wide SNPs were tested for association analysis, which revealed that carotenoid biosynthesis in cowpea sprouts is a polygenic trait controlled by genes with additive and dominance effects. Seven loci were significantly associated with the variation in carotenoid content. The evidence of variation in carotenoid content and genomic regions controlling the trait creates an avenue for breeding cowpea varieties with enhanced sprouts carotenoid content.
Collapse
Affiliation(s)
- Frejus Ariel Kpedetin Sodedji
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin; (S.A.); (A.E.A.)
- West Africa Center of Excellence in Climate Change Biodiversity and Sustainable Agriculture (CEA-CCBAD), Biosciences Research Unit, University Felix Houphouet-Boigny, 22 BP 582 Abidjan 22, Abidjan 582, Côte d’Ivoire;
| | - Dahye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
| | - Symphorien Agbahoungba
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin; (S.A.); (A.E.A.)
| | - Achille Ephrem Assogbadjo
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin; (S.A.); (A.E.A.)
| | - Simon-Pierre Assanvo N’Guetta
- West Africa Center of Excellence in Climate Change Biodiversity and Sustainable Agriculture (CEA-CCBAD), Biosciences Research Unit, University Felix Houphouet-Boigny, 22 BP 582 Abidjan 22, Abidjan 582, Côte d’Ivoire;
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
6
|
Rao H, Xue F, Ma S, Zhao M, Zhao D, Hao J. Contribution of slightly acidic electrolytic water (
SAEW
) to food safety, nutrients enrichment and allergenicity reduction of peanut sprouts. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Rao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
- Tongfu Group Co., Ltd Wuhu Anhui PR China
| | - Feng Xue
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| | - Shuhong Ma
- Hebei Tongfu Health Industry Co., Ltd Shijiazhuang Hebei PR China
| | - Meng Zhao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| | - Dandan Zhao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| | - Jianxiong Hao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| |
Collapse
|