1
|
Takahashi M, Wakefield CB, Newman SJ, Hillcoat KB, Saunders BJ, Harvey ES. Utility of body and otolith morphometry to discriminate cryptic juveniles of two sympatric red snappers (Perciformes: Lutjanidae). JOURNAL OF FISH BIOLOGY 2023; 103:1312-1320. [PMID: 37602957 DOI: 10.1111/jfb.15530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
The sympatric red snappers, Lutjanus erythropterus and Lutjanus malabaricus, are highly valued by commercial and recreational fishers along the tropical northern coasts of Australia and throughout their distribution. Studies on the life history and ecology of these congeners are confounded by difficulties in distinguishing the cryptic juveniles of each species (i.e., < 200 mm total length). This study aimed to validate a robust and cost-effective method to discriminate these juveniles using body and/or otolith morphometric data in a multivariate analysis. Juvenile samples were collected from the northwest (n = 71) and northeast (n = 19) coasts of Australia, and species identification was confirmed using DNA barcoding. The most parsimonious multivariate models achieved accurate species prediction rates of 98.8%, which consisted of just three body variables (dorsal fin length, the distance from the snout to the anterior edge of the eye, and either jaw length or distance from the snout to the preoperculum). The high level of discrimination for these cryptic juveniles highlights the robustness of this morphometric approach. The slightly lower rate of discrimination using otolith morphology (84.9%) was associated with greater regional variation in L. malabaricus between the northwest and northeast coasts. Slight variations in otolith shape are typically used to determine stock structure, which highlights the potential need to collect samples over a broader area of a species geographic range when using an otolith morphometric discrimination model. The method outlined in this study could be applied to distinguish other cryptic congeneric fish species, including from archived otolith collections. Moreover, this method has the potential to be utilized in assessing species compositions using body measurements from in situ stereo-video.
Collapse
Affiliation(s)
- Miwa Takahashi
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Indian Oceans Marine Research Centre, Crawley, Australia
| | - Corey B Wakefield
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, Australia
| | - Stephen J Newman
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, Australia
| | - Kyle B Hillcoat
- ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Australia
| | | | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
2
|
Holmes MJ, Lewis RJ. Model of the Origin of a Ciguatoxic Grouper ( Plectropomus leopardus). Toxins (Basel) 2023; 15:toxins15030230. [PMID: 36977121 PMCID: PMC10055633 DOI: 10.3390/toxins15030230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Published data were used to model the transfer of ciguatoxins (CTX) across three trophic levels of a marine food chain on the Great Barrier Reef (GBR), Australia, to produce a mildly toxic common coral trout (Plectropomus leopardus), one of the most targeted food fishes on the GBR. Our model generated a 1.6 kg grouper with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1 = CTX1B) from 1.1 to 4.3 µg of P-CTX-1 equivalents (eq.) entering the food chain from 0.7 to 2.7 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 pg/cell of the P-CTX-1 precursor, P-CTX-4B (CTX4B). We simulated the food chain transfer of ciguatoxins via surgeonfishes by modelling Ctenochaetus striatus feeding on turf algae. A C. striatus feeding on ≥1000 Gambierdiscus/cm2 of turf algae accumulates sufficient toxin in <2 days that when preyed on, produces a 1.6 kg common coral trout with a flesh concentration of 0.1 µg/kg P-CTX-1. Our model shows that even transient blooms of highly ciguatoxic Gambierdiscus can generate ciguateric fishes. In contrast, sparse cell densities of ≤10 Gambierdiscus/cm2 are unlikely to pose a significant risk, at least in areas where the P-CTX-1 family of ciguatoxins predominate. The ciguatera risk from intermediate Gambierdiscus densities (~100 cells/cm2) is more difficult to assess, as it requires feeding times for surgeonfish (~4-14 days) that overlap with turnover rates of turf algae that are grazed by herbivorous fishes, at least in regions such as the GBR, where stocks of herbivorous fishes are not impacted by fishing. We use our model to explore how the duration of ciguatoxic Gambierdiscus blooms, the type of ciguatoxins they produce, and fish feeding behaviours can produce differences in relative toxicities between trophic levels. Our simple model indicates thresholds for the design of risk and mitigation strategies for ciguatera and the variables that can be manipulated to explore alternate scenarios for the accumulation and transfer of P-CTX-1 analogues through marine food chains and, potentially, for other ciguatoxins in other regions, as more data become available.
Collapse
Affiliation(s)
- Michael J Holmes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
3
|
Galvez JR, St John ME, McLean K, Touokong CD, Gonwouo LN, Martin CH. Trophic specialization on unique resources despite limited niche divergence in a celebrated example of sympatric speciation. ECOLOGY OF FRESHWATER FISH 2022; 31:675-692. [PMID: 36211622 PMCID: PMC9542214 DOI: 10.1111/eff.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/02/2022] [Indexed: 06/16/2023]
Abstract
Trophic niche partitioning is observed in many adaptive radiations and is hypothesized to be a central process underlying species divergence. However, patterns of dietary niche partitioning are inconsistent across radiations and there are few studies of niche partitioning in putative examples of sympatric speciation. Here, we conducted the first quantitative study of dietary niche partitioning using stomach contents and stable isotope analyses in one of the most celebrated examples of sympatric speciation: the cichlid radiation from crater lake Barombi Mbo, Cameroon. We found little evidence for trophic niche partitioning among cichlids, including the nine species coexisting in the narrow littoral zone. Stable isotope analyses supported these conclusions of substantial dietary overlap. Our data, however, did reveal that five of eleven species consume rare dietary items, including freshwater sponge, terrestrial ants, and nocturnal foraging on shrimp. Stomach contents of the spongivore (Pungu maclareni) were 20% freshwater sponge, notable considering that only 0.04% of all fishes consume sponges. Overall, we conclude that cichlid species in lake Barombi Mbo overlap considerably in broad dietary niches-in part due to the large proportion of detritus in the stomach contents of all species-but there is evidence for divergence among species in their diet specializations on unique resources. We speculate that these species may utilize these additional specialized resources during periods of low resource abundance in support of Liem's paradox.
Collapse
Affiliation(s)
- Jacquelyn R Galvez
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Michelle E St John
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Keara McLean
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Legrand Nono Gonwouo
- Laboratory of Zoology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Alexander JB, Marnane MJ, Elsdon TS, Bunce M, Songploy S, Sitaworawet P, Harvey ES. Complementary molecular and visual sampling of fish on oil and gas platforms provides superior biodiversity characterisation. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105692. [PMID: 35785679 DOI: 10.1016/j.marenvres.2022.105692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Offshore oil and gas platforms have the potential to provide complex refugia for fish and benthic colonisers. We compare two methods of biodiversity assessment for fish and elasmobranchs at seven decommissioned oil and gas platforms as well as five sediment sites, located 5 km from platforms, in the Gulf of Thailand. Using surveys from stereo-video ROV transects, and data from Environmental DNA (eDNA) water-column samples, we detected fish and elasmobranch taxa from 39 families and 66 genera across both platform and sediment sites with eDNA, compared with 18 families and 29 genera by stereo-ROV with platforms yielding significantly greater species richness. This study demonstrates that the combination of stereo-video ROV and eDNA provide effective, non-extractive and complementary methods to enhance data capture. This approach sets new benchmarks for evaluating fish assemblages surrounding platforms and will enhance measurements of biota to inform decisions on the fate of oil/gas infrastructure.
Collapse
Affiliation(s)
- Jason B Alexander
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
| | | | - Travis S Elsdon
- Chevron Technical Center, Perth, Western Australia, Australia
| | - Michael Bunce
- Institute of Environmental Science and Research, New Zealand
| | - Se Songploy
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | | | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
5
|
Homma C, Inokuchi D, Nakamura Y, Uy WH, Ohnishi K, Yamaguchi H, Adachi M. Effectiveness of blocking primers and a peptide nucleic acid (PNA) clamp for 18S metabarcoding dietary analysis of herbivorous fish. PLoS One 2022; 17:e0266268. [PMID: 35442965 PMCID: PMC9020718 DOI: 10.1371/journal.pone.0266268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
The structure of food webs and carbon flow in aquatic ecosystems can be better understood by studying contributing factors such as the diets of herbivorous fish. Metabarcoding using a high-throughput sequencer has recently been used to clarify prey organisms of various fish except herbivorous fish. Since sequences of predator fish have dominated in sequences obtained by metabarcoding, we investigated a method for suppressing the amplification of fish DNA by using a blocking primer or peptide nucleic acid (PNA) clamp to determine the prey organisms of herbivorous fish. We designed three blocking primers and one PNA clamp that anneal to fish-specific sequences and examined how efficient they were in suppressing DNA amplification in various herbivorous fish. The results showed that the PNA clamp completely suppressed fish DNA amplification, and one of the blocking primers suppressed fish DNA amplification but less efficiently than the PNA clamp. Finally, we conducted metabarcoding using mock community samples as templates to determine whether the blocking primer or the PNA clamp was effective in suppressing fish DNA amplification. The results showed that the PNA clamp suppressed 99.3%-99.9% of fish DNA amplification, whereas the blocking primer suppressed 3.3%-32.9%. Therefore, we propose the application of the PNA clamp for clarifying the prey organisms and food preferences of various herbivorous fish.
Collapse
Affiliation(s)
- Chiho Homma
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
| | - Daiki Inokuchi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Yohei Nakamura
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Wilfredo H. Uy
- Institute of Fisheries Research and Development, Mindanao State University at Naawan, Naawan, Misamis Oriental, Philippines
| | - Kouhei Ohnishi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Haruo Yamaguchi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Masao Adachi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
- * E-mail:
| |
Collapse
|
6
|
Howse MWF, McGruddy RA, Felden A, Baty JW, Haywood J, Lester PJ. The native and exotic prey community of two invasive paper wasps (Hymenoptera: Vespidae) in New Zealand as determined by DNA barcoding. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02739-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractSocial wasps are invasive in many regions around the world. In their new communities, introduced predators such as these wasps may be beneficial as consumers of exotic pests, but they will also consume native species. Here, we examined the diet of the exotic European paper wasp (Polistes dominula) and the closely related congener, Polistes chinensis, in a region of New Zealand where they co-occur. DNA barcoding was used to analyse their diet. The diet of both wasp species was largely Lepidopteran but other orders such as Hemiptera, Diptera and Coleoptera were also represented. Our analysis showed substantial site-to-site variation in diet. The two wasps differed significantly in their prey, although these differences appear to be driven by taxa identified from a small number of DNA reads in a small number of samples. Native and introduced fauna were represented in the diets of both wasps and included important agricultural pests. Of the 92 prey taxa able to be identified to species level, 81 were identified as exotic or introduced to New Zealand. The remaining 11 were species native to New Zealand. However, our estimates suggest over 50% of the prey DNA in the wasp diet is derived from native species. These wasps are abundant in some coastal and urban habitats, where they are likely to consume pest species as well as native species of conservation importance. The ecosystem services or costs and benefits provided by these invasive species are likely to be contingent on the prey communities and habitats they occupy.
Collapse
|
7
|
Zhong KX, Cho A, Deeg CM, Chan AM, Suttle CA. Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas Selective Amplicon Sequencing (CCSAS). MICROBIOME 2021; 9:230. [PMID: 34823604 PMCID: PMC8620255 DOI: 10.1186/s40168-021-01180-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The microbiome affects the health of plants and animals, including humans, and has many biological, ecological, and evolutionary consequences. Microbiome studies typically rely on sequencing ribosomal 16S RNA gene fragments, which serve as taxonomic markers for prokaryotic communities; however, for eukaryotic microbes this approach is compromised, because 18S rRNA gene sequences from microbial eukaryotes are swamped by contaminating host rRNA gene sequences. RESULTS To overcome this problem, we developed CRISPR-Cas Selective Amplicon Sequencing (CCSAS), a high-resolution and efficient approach for characterizing eukaryotic microbiomes. CCSAS uses taxon-specific single-guide RNA (sgRNA) to direct Cas9 to cut 18S rRNA gene sequences of the host, while leaving protistan and fungal sequences intact. We validated the specificity of the sgRNA on ten model organisms and an artificially constructed (mock) community of nine protistan and fungal pathogens. The results showed that > 96.5% of host rRNA gene amplicons were cleaved, while 18S rRNA gene sequences from protists and fungi were unaffected. When used to assess the eukaryotic microbiome of oyster spat from a hatchery, CCSAS revealed a diverse community of eukaryotic microbes, typically with much less contamination from oyster 18S rRNA gene sequences than other methods using non-metazoan or blocking primers. However, each method revealed taxonomic groups that were not detected using the other methods, showing that a single approach is unlikely to uncover the entire eukaryotic microbiome in complex communities. To facilitate the application of CCSAS, we designed taxon-specific sgRNA for ~16,000 metazoan and plant taxa, making CCSAS widely available for characterizing eukaryotic microbiomes that have largely been neglected. CONCLUSION CCSAS provides a high-through-put and cost-effective approach for resolving the eukaryotic microbiome of metazoa and plants with minimal contamination from host 18S rRNA gene sequences. Video Abstract.
Collapse
Affiliation(s)
- Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Anna Cho
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christoph M Deeg
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy M Chan
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada.
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Secondary predation constrains DNA-based diet reconstruction in two threatened shark species. Sci Rep 2021; 11:18350. [PMID: 34526519 PMCID: PMC8443726 DOI: 10.1038/s41598-021-96856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
Increasing fishing effort, including bycatch and discard practices, are impacting marine biodiversity, particularly among slow-to-reproduce taxa such as elasmobranchs, and specifically sharks. While some fisheries involving sharks are sustainably managed, collateral mortalities continue, contributing towards > 35% of species being threatened with extinction. To effectively manage shark stocks, life-history information, including resource use and feeding ecologies is pivotal, especially among those species with wide-ranging distributions. Two cosmopolitan sharks bycaught off eastern Australia are the common blacktip shark (Carcharhinus limbatus; globally classified as Near Threatened) and great hammerhead (Sphyrna mokarran; Critically Endangered). We opportunistically sampled the digestive tracts of these two species (and also any whole prey; termed the 'Russian-doll' approach), caught in bather-protection gillnets off northern New South Wales, to investigate the capacity for DNA metabarcoding to simultaneously determine predator and prey regional feeding ecologies. While sample sizes were small, S. mokkaran fed predominantly on stingrays and skates (Myliobatiformes and Rajiformes), but also teleosts, while C. limbatus mostly consumed teleosts. Metabarcoding assays showed extensive intermixing of taxa from the digestive tracts of predators and their whole prey, likely via the predator's stomach chyme, negating the opportunity to distinguish between primary and secondary predation. This Russian-doll effect requires further investigation in DNA metabarcoding studies focussing on dietary preferences and implies that any outcomes will need to be interpreted concomitant with traditional visual approaches.
Collapse
|