1
|
Galetto L, Lucetti G, Bucci L, Canuto F, Rossi M, Abbà S, Vallino M, Parise C, Palmano S, Manfredi M, Bosco D, Marzachì C. Natterin-like and legumain insect gut proteins promote the multiplication of a vector-borne bacterial plant pathogen. Microbiol Res 2025; 291:127984. [PMID: 39616656 DOI: 10.1016/j.micres.2024.127984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Phytoplasmas are phloem-limited plant pathogenic bacteria causing diseases in many plant species. They are transmitted by Hemipteran insect species in a persistent-propagative manner. Phytoplasmas are wall-less, and their membrane proteins are involved in pathogen internalization into host cells. We focused on the immunodominant membrane protein (Imp) of Flavescence dorée phytoplasma (FDp), a grapevine quarantine pest and a major threat to European viticulture. Scaphoideus titanus is the main natural vector of FDp to grapevine, whereas Euscelidius variegatus is commonly used as laboratory vector. Previous works indicated that recombinant Imp of two FDp strains (FD-C and FD-D) selectively interact with gut proteins from vector species rather than those from non-vectors. Here, similar patterns of interacting insect gut proteins were obtained from both vector species, following pull-down with His-tagged FDp Imps. After identification of several targets, four S. titanus and five E. variegatus proteins interacting with Imp were further characterized by measuring expression in different insect tissues and in healthy vs. infected insects. Specific RNAi silencing of two of these vector genes, namely natterin and legumain, resulted in a significant reduction of phytoplasma multiplication in insects upon pathogen acquisition, compared to control insects. Natterin displays a DM9 domain and legumain possesses a signature of G protein receptor, supporting their involvement as FDp Imp receptors. Outcomes of this work are discussed with particular attention devoted to the gain of knowledge on host/pathogen interaction as well as to the potential impact on improvement phytoplasma disease management.
Collapse
Affiliation(s)
- Luciana Galetto
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy.
| | - Giulia Lucetti
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| | - Luca Bucci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| | - Francesca Canuto
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| | - Cecilia Parise
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy; Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, TO, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| | - Marcello Manfredi
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Palazzo Bellini, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Domenico Bosco
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy; Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, TO, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy
| |
Collapse
|
2
|
Canale MC, Pompelli Manica MA, Silva de Andrade MV, Castilhos RV. Leptodelphax maculigera (Hemiptera: Delphacidae) Harbors the Corn Stunt Complex Pathogens. PLANT DISEASE 2024; 108:2653-2657. [PMID: 38640431 DOI: 10.1094/pdis-01-24-0142-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The African planthopper Leptodelphax maculigera (Hemiptera: Delphacidae) has been recently reported in many places in Brazil in association with maize. Its occurrence in maize production fields in Brazil has brought concerns to the corn production chain regarding the possibility of this planthopper to be a vector for maize bushy stunt phytoplasma (MBSP), corn stunt spiroplasma (Spiroplasma kunkelii), maize rayado fino virus (MRFV), and maize striate mosaic virus (MSMV). The phytoplasma and spiroplasma, which are bacteria belonging to the class Mollicutes, and the two viruses are associated with the corn stunt disease complex. Given the presence of the African planthopper species and the corn stunt complex in Brazil, we further investigated the abundance of this planthopper species in the State of Santa Catarina, Brazil, and whether the planthopper can carry the four pathogens. We inspected 12 maize production fields in different municipalities in the state for 20 weeks, using two yellow sticky traps for each maize field. The sticky traps were replaced weekly. A total of 130 specimens of L. maculigera were captured, with a great discrepancy in quantity among locations and weeks. We detected the mollicute MBSP and the viruses MRFV and MSMV in L. maculigera, whereas S. kunkelii was absent in the assessed African planthopper samples. The molecular detection of the phytoplasma and the viruses in field-collected African planthoppers is strong evidence that this insect species has the ability to acquire those pathogens through feeding from the phloem of diseased maize plants. Nonetheless, transmission capacity needs to be experimentally proven to assert L. maculigera as a vector for the corn-stunting pathogens.
Collapse
Affiliation(s)
- Maria Cristina Canale
- Agricultural Research and Rural Extension Company of Santa Catarina (Epagri), 89.803-904 Chapecó, SC, Brazil
| | - Magda Alana Pompelli Manica
- Agricultural Research and Rural Extension Company of Santa Catarina (Epagri), 89.803-904 Chapecó, SC, Brazil
| | | | - Rodolfo Vargas Castilhos
- Agricultural Research and Rural Extension Company of Santa Catarina (Epagri), 89.803-904 Chapecó, SC, Brazil
| |
Collapse
|
3
|
Akahori M, Miyazaki A, Koinuma H, Tokuda R, Iwabuchi N, Kitazawa Y, Maejima K, Namba S, Yamaji Y. Use of the 23S rRNA gene as a target template in the universal loop-mediated isothermal amplification (LAMP) of genomic DNA from phytoplasmas. Microbiol Spectr 2024; 12:e0010624. [PMID: 38534170 PMCID: PMC11064480 DOI: 10.1128/spectrum.00106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Plant-pathogenic bacteria cause numerous diseases in host plants and can result in serious damage. Timely and accurate diagnostic techniques are, therefore, crucial. While advances in molecular techniques have led to diagnostic systems able to distinguish known plant pathogens at the species or strain level, systems covering larger categories are mostly lacking. In this study, a specific and universal LAMP-based diagnostic system was developed for phytoplasmas, a large group of insect-borne plant-pathogenic bacteria that cause significant agricultural losses worldwide. Targeting the 23S rRNA gene of phytoplasma, the newly designed primer set CaPU23S-4 detected 31 'Candidatus Phytoplasma' tested within 30 min. This primer set also showed high specificity, without false-positive results for other bacteria (including close relatives of phytoplasmas) or healthy plants. The detection sensitivity was ~10,000 times higher than that of PCR methods for phytoplasma detection. A simple, rapid method of DNA extraction, by boiling phytoplasma-infected tissues, was developed as well. When used together with the universal LAMP assay, it enabled the prompt and accurate detection of phytoplasmas from plants and insects. The results demonstrate the potential of the 23S rRNA gene as a versatile target for the LAMP-based universal detection of bacteria at the genus level and provide a novel avenue for exploring this gene as molecular marker for phytoplasma presence detection.IMPORTANCEPhytoplasmas are associated with economically important diseases in crops worldwide, including lethal yellowing of coconut palm, "flavescence dorée" and "bois noir" of grapevine, X-disease in stone fruits, and white leaf and grassy shoot in sugarcane. Numerous LAMP-based diagnostic assays, mostly targeting the 16S rRNA gene, have been reported for phytoplasmas. However, these assays can only detect a limited number of 'Candidatus Phytoplasma' species, whereas the genus includes at least 50 of these species. In this study, a universal, specific, and rapid diagnostic system was developed that can detect all provisionally classified phytoplasmas within 1 h by combining the LAMP technique targeting the 23S rRNA gene with a simple method for DNA extraction. This diagnostic system will facilitate the on-site detection of phytoplasmas and may aid in the discovery of new phytoplasma-associated diseases and putative insect vectors, irrespective of the availability of infrastructure and experimental resources.
Collapse
Affiliation(s)
- Mako Akahori
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akio Miyazaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Arricau-Bouvery N, Dubrana MP, Canuto F, Duret S, Brocard L, Claverol S, Malembic-Maher S, Foissac X. Flavescence dorée phytoplasma enters insect cells by a clathrin-mediated endocytosis allowing infection of its insect vector. Sci Rep 2023; 13:2211. [PMID: 36750707 PMCID: PMC9905606 DOI: 10.1038/s41598-023-29341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
To perform its propagative and circulative cycle into its insect vector, the flavescence dorée phytoplasma invades different cell types. Clathrin-mediated endocytosis is used by a wide range of bacteria to infect eukaryote cells. Among the insect proteins interacting with the phytoplasma adhesin VmpA, we identified the adaptor protein complex AP-1 and AP-2 suggesting that phytoplasmas could enter the insect cells via clathrin-mediated endocytosis. By infection assays of insect cells in culture, we showed that phytoplasmas entry into Drosophila S2 cells was more efficient than infection of the Euva cell line developed from the insect vector Euscelidius variegatus. Chlorpromazine, cytochalasin D and knockdown of clathrin heavy chain (chc) gene expression using RNA interference inhibited entry of phytoplasmas into S2 cells. During invasion of S2 cells, phytoplasmas were observed very closed to recombinant GFP-labelled clathrin light chain. To verify the role of clathrin in the insect colonization by phytoplasmas, RNAi was performed via artificial feeding of chc dsRNA by the vector E. variegatus. This decreased the expression of chc gene in the midgut and heads of E. variegatus. The chc lower expression correlated to a decreased of midgut and salivary gland cells colonization after the insects had ingested phytoplasmas from infected plants. In conclusion, results indicate that clathrin is important for the FD phytoplasma to enter insect cells and colonize its insect vector.
Collapse
Affiliation(s)
- Nathalie Arricau-Bouvery
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France.
| | - Marie-Pierre Dubrana
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Francesca Canuto
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Sybille Duret
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33140, Villenave d'Ornon, France
| | | | - Sylvie Malembic-Maher
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Xavier Foissac
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| |
Collapse
|
5
|
Shi J, Zhou J, Jiang F, Li Z, Zhu S. The effects of the E3 ubiquitin-protein ligase UBR7 of Frankliniella occidentalis on the ability of insects to acquire and transmit TSWV. PeerJ 2023; 11:e15385. [PMID: 37187513 PMCID: PMC10178284 DOI: 10.7717/peerj.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The interactions between plant viruses and insect vectors are very complex. In recent years, RNA sequencing data have been used to elucidate critical genes of Tomato spotted wilt ortho-tospovirus (TSWV) and Frankliniella occidentalis (F. occidentalis). However, very little is known about the essential genes involved in thrips acquisition and transmission of TSWV. Based on transcriptome data of F. occidentalis infected with TSWV, we verified the complete sequence of the E3 ubiquitin-protein ligase UBR7 gene (UBR7), which is closely related to virus transmission. Additionally, we found that UBR7 belongs to the E3 ubiquitin-protein ligase family that is highly expressed in adulthood in F. occidentalis. UBR7 could interfere with virus replication and thus affect the transmission efficiency of F. occidentalis. With low URB7 expression, TSWV transmission efficiency decreased, while TSWV acquisition efficiency was unaffected. Moreover, the direct interaction between UBR7 and the nucleocapsid (N) protein of TSWV was investigated through surface plasmon resonance and GST pull-down. In conclusion, we found that UBR7 is a crucial protein for TSWV transmission by F. occidentalis, as it directly interacts with TSWV N. This study provides a new direction for developing green pesticides targeting E3 ubiquitin to control TSWV and F. occidentalis.
Collapse
Affiliation(s)
- Junxia Shi
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junxian Zhou
- Agricultural Technology Service Center of Yunyang County, Chongqing, China
| | - Fan Jiang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhihong Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuifang Zhu
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
6
|
The Complete Genome of the “Flavescence Dorée” Phytoplasma Reveals Characteristics of Low Genome Plasticity. BIOLOGY 2022; 11:biology11070953. [PMID: 36101334 PMCID: PMC9312162 DOI: 10.3390/biology11070953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022]
Abstract
Members of the genus ‘Candidatus Phytoplasma’ are obligate intracellular bacteria restricted to phloem sieve elements and are able to colonize several tissues and the hemolymph in their insect vectors. The current unfeasibility of axenic culture and the low complexity of genomic sequences are obstacles in assembling complete chromosomes. Here, a method combining pathogen DNA enrichment from infected insects and dual deep-sequencing technologies was used to obtain the complete genome of a phytoplasma causing Grapevine Flavescence dorée. The de novo assembly generated a circular chromosome of 654,223 bp containing 506 protein-coding genes. Quality assessment of the draft showed a high degree of completeness. Comparative analysis with other phytoplasmas revealed the absence of potential mobile units and a reduced amount of putative phage-derived segments, suggesting a low genome plasticity. Phylogenetic analyses identified Candidatus Phytoplasma ziziphi as the closest fully sequenced relative. The “Flavescence dorée” phytoplasma strain CH genome also encoded for several putative effector proteins potentially playing a role in pathogen virulence. The availability of this genome provides the basis for the study of the pathogenicity mechanisms and evolution of the Flavescence dorée phytoplasma.
Collapse
|
7
|
Trivellone V, Wei W, Filippin L, Dietrich CH. Screening potential insect vectors in a museum biorepository reveals undiscovered diversity of plant pathogens in natural areas. Ecol Evol 2021; 11:6493-6503. [PMID: 34141234 PMCID: PMC8207438 DOI: 10.1002/ece3.7502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoplasmas (Mollicutes, Acholeplasmataceae), vector-borne obligate bacterial plant parasites, infect nearly 1,000 plant species and unknown numbers of insects, mainly leafhoppers (Hemiptera, Deltocephalinae), which play a key role in transmission and epidemiology. Although the plant-phytoplasma-insect association has been evolving for >300 million years, nearly all known phytoplasmas have been discovered as a result of the damage inflicted by phytoplasma diseases on crops. Few efforts have been made to study phytoplasmas occurring in noneconomically important plants in natural habitats. In this study, a subsample of leafhopper specimens preserved in a large museum biorepository was analyzed to unveil potential new associations. PCR screening for phytoplasmas performed on 227 phloem-feeding leafhoppers collected worldwide from natural habitats revealed the presence of 6 different previously unknown phytoplasma strains. This indicates that museum collections of herbivorous insects represent a rich and largely untapped resource for discovery of new plant pathogens, that natural areas worldwide harbor a diverse but largely undiscovered diversity of phytoplasmas and potential insect vectors, and that independent epidemiological cycles occur in such habitats, posing a potential threat of disease spillover into agricultural systems. Larger-scale future investigations will contribute to a better understanding of phytoplasma genetic diversity, insect host range, and insect-borne phytoplasma transmission and provide an early warning for the emergence of new phytoplasma diseases across global agroecosystems.
Collapse
Affiliation(s)
- Valeria Trivellone
- Illinois Natural History SurveyPrairie Research InstituteUniversity of IllinoisChampaignILUSA
| | - Wei Wei
- Molecular Plant Pathology LaboratoryBeltsville Agricultural Research CenterAgricultural Research ServiceUnited States Department of AgricultureBeltsvilleMDUSA
| | - Luisa Filippin
- CREA–VECouncil for Agricultural Research and EconomicsResearch Centre for Viticulture and EnologyConegliano, TrevisoItaly
| | - Christopher H. Dietrich
- Illinois Natural History SurveyPrairie Research InstituteUniversity of IllinoisChampaignILUSA
| |
Collapse
|
8
|
Interactions between the flavescence dorée phytoplasma and its insect vector indicate lectin-type adhesion mediated by the adhesin VmpA. Sci Rep 2021; 11:11222. [PMID: 34045641 PMCID: PMC8160148 DOI: 10.1038/s41598-021-90809-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
The flavescence dorée phytoplasma undergoes a propagative cycle in its insect vectors by first interacting with the insect cell surfaces, primarily in the midgut lumen and subsequently in the salivary glands. Adhesion of flavescence dorée phytoplasma to insect cells is mediated by the adhesin VmpA. We hypothesize that VmpA may have lectin-like activity, similar to several adhesins of bacteria that invade the insect gut. We first demonstrated that the luminal surface of the midgut and the basal surface of the salivary gland cells of the natural vector Scaphoideus titanus and those of the experimental vector Euscelidius variegatus were differentially glycosylated. Using ELISA, inhibition and competitive adhesion assays, and protein overlay assays in the Euva-6 insect cell line, we showed that the protein VmpA binds insect proteins in a lectin-like manner. In conclusion, the results of this study indicate that N-acetylglucosamine and mannose present on the surfaces of the midgut and salivary glands serve as recognition sites for the phytoplasma adhesin VmpA.
Collapse
|
9
|
Phytoplasma diseases of plants: molecular diagnostics and way forward. World J Microbiol Biotechnol 2021; 37:102. [PMID: 34009500 DOI: 10.1007/s11274-021-03061-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Phytoplasmas are obligate phytopathogenic bacteria associated with devastating diseases in hundreds of crops across the world. They have been responsible for huge economic losses in many crop plants for decades now. Isolation and establishment of axenic culture of phytoplasma in complex media is a recent progress in phytoplasma research. Earlier methods for phytoplasma disease detection included symptom profiling, microscopy, serology and dodder transmission studies. With advancement in the field of molecular biology, phytoplasma diagnostics and characterisation witnessed radical improvement. Starting from PCR amplification which often necessities a nested PCR on account of low titre of phytoplasmas, to the closed tube quantitative PCR assays and then the ddPCR, an array of diagnostics have been developed for phytoplasma. The isothermal diagnostic platforms are the latest addition to this and the Loop Mediated Isothermal Amplification (LAMP) assay has been applied for the detection of phytoplasma from several hosts. The futuristic approach in phytoplasma detection will be very likely provided by an integration of nanotechnology and molecular diagnostics. Phytoplasma disease management majorly relies on early detection, vector control, use of disease free planting materials and cultivation of resistant varieties. Hence understanding the molecular mechanism of phytoplasma-host interaction is as important as timely and accurate detection, in the management of phytoplasma diseases. Further, the changing climatic scenario and global warming may lead to an upsurge in the phytoplasma diseases spread and severity across the world, making disease management even more challenging.
Collapse
|
10
|
Galetto L, Abbà S, Rossi M, Ripamonti M, Palmano S, Bosco D, Marzachì C. Silencing of ATP synthase β reduces phytoplasma multiplication in a leafhopper vector. JOURNAL OF INSECT PHYSIOLOGY 2021; 128:104176. [PMID: 33253714 DOI: 10.1016/j.jinsphys.2020.104176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The leafhopper Euscelidius variegatus is a natural vector of the chrysanthemum yellows phytoplasma (CYp) and a laboratory vector of the Flavescence dorée phytoplasma (FDp). Previous studies indicated a crucial role for insect ATP synthase α and β subunits during phytoplasma infection of the vector species. Gene silencing of ATP synthase β was obtained by injection of specific dsRNAs in E. variegatus. Here we present the long-lasting nature of such silencing, its effects on the small RNA profile, the significant reduction of the corresponding protein expression, and the impact on phytoplasma acquisition capability. The specific transcript expression was silenced at least up to 37 days post injection with an average reduction of 100 times in insects injected with dsRNAs targeting ATP synthase β (dsATP) compared with those injected with dsRNAs targeting green fluorescent protein (dsGFP), used as negative controls. Specific silencing of this gene was also confirmed at protein level at 15 days after the injection. Total sRNA reads mapping to dsATP and dsGFP sequences in analysed libraries showed in both cases a peak of 21 nt, a length consistent with the generation of dsRNA-derived siRNAs by RNAi pathway. Reads mapped exclusively to the fragment corresponding to the injected dsATPs, probably indicating the absence of a secondary machinery for siRNA synthesis. Insects injected either with dsATP or dsGFP successfully acquired CYp and FDp during feeding on infected plants. However, the average phytoplasma amount in dsATP insects was significantly lower than that measured in dsGFP specimens, indicating a probable reduction of the pathogen multiplication when ATP synthase β was silenced. The role of the insect ATP synthase β during phytoplasma infection process is discussed.
Collapse
Affiliation(s)
- Luciana Galetto
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73 10135 Torino, Italy.
| | - Simona Abbà
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73 10135 Torino, Italy.
| | - Marika Rossi
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73 10135 Torino, Italy.
| | - Matteo Ripamonti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73 10135 Torino, Italy; Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Sabrina Palmano
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73 10135 Torino, Italy.
| | - Domenico Bosco
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73 10135 Torino, Italy; Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73 10135 Torino, Italy.
| |
Collapse
|
11
|
Weil T, Ometto L, Esteve-Codina A, Gómez-Garrido J, Oppedisano T, Lotti C, Dabad M, Alioto T, Vrhovsek U, Hogenhout S, Anfora G. Linking omics and ecology to dissect interactions between the apple proliferation phytoplasma and its psyllid vector Cacopsylla melanoneura. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103474. [PMID: 33007407 DOI: 10.1016/j.ibmb.2020.103474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that are detrimental to many plants and cause devastating effects on crops. They are not viable outside their host plants and depend on specific insect vectors for their transmission. So far, research has largely focused on plant-pathogen interactions, while the complex interactions between phytoplasmas and insect vectors are far less understood. Here, we used next-generation sequencing to investigate how transcriptional profiles of the vector psyllid Cacopsylla melanoneura (Hemiptera, Psyllidae) are altered during infection by the bacterium Candidatus Phytoplasma mali (P. mali), which causes the economically important apple proliferation disease. This first de novo transcriptome assembly of an apple proliferation vector revealed that mainly genes involved in small GTPase mediated signal transduction, nervous system development, adhesion, reproduction, actin-filament based and rhythmic processes are significantly altered upon P. mali infection. Furthermore, the presence of P. mali is accompanied by significant changes in carbohydrate and polyol levels, as revealed by metabolomics analysis. Taken together, our results suggest that infection with P. mali impacts on the insect vector physiology, which in turn likely affects the ability of the vector to transmit phytoplasma.
Collapse
Affiliation(s)
- Tobias Weil
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy.
| | - Lino Ometto
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Tiziana Oppedisano
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Present address: Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston (OR, USA
| | - Cesare Lotti
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Urska Vrhovsek
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy
| | - Saskia Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gianfranco Anfora
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Centre Agriculture Food Environment, University of Trento, 38010, San Michele all'Adige (TN), Italy
| |
Collapse
|
12
|
Huang W, Reyes-Caldas P, Mann M, Seifbarghi S, Kahn A, Almeida RPP, Béven L, Heck M, Hogenhout SA, Coaker G. Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions. MOLECULAR PLANT 2020; 13:1379-1393. [PMID: 32835885 PMCID: PMC7769051 DOI: 10.1016/j.molp.2020.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/01/2023]
Abstract
Vector-borne plant diseases have significant ecological and economic impacts, affecting farm profitability and forest composition throughout the world. Bacterial vector-borne pathogens have evolved sophisticated strategies to interact with their hemipteran insect vectors and plant hosts. These pathogens reside in plant vascular tissue, and their study represents an excellent opportunity to uncover novel biological mechanisms regulating intracellular pathogenesis and to contribute to the control of some of the world's most invasive emerging diseases. In this perspective, we highlight recent advances and major unanswered questions in the realm of bacterial vector-borne disease, focusing on liberibacters, phytoplasmas, spiroplasmas, and Xylella fastidiosa.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paola Reyes-Caldas
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Marina Mann
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shirin Seifbarghi
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Alexandra Kahn
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Laure Béven
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE, Villenave d'Ornon 33882 France
| | - Michelle Heck
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA; Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, NY 14853, USA
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Ability of Euscelidius variegatus to Transmit Flavescence Dorée Phytoplasma with a Short Latency Period. INSECTS 2020; 11:insects11090603. [PMID: 32899545 PMCID: PMC7563877 DOI: 10.3390/insects11090603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Phytoplasmas are a group of phloem-restricted phytopathogens that attack a huge number of wild and cultivated plants, causing heavy economic losses. They are transmitted by phloem-feeding insects of the order Hemiptera; the transmission process requires the vector to orally acquire the phytoplasma by feeding on an infected plant, becoming infective once it reaches the salivary glands after quite a long latency period. Since infection is retained for all of the insect’s life, acquisition at the nymphal stage is considered to be most effective because of the long time needed before pathogen inoculation. This work provides evidence for the reduced latency period needed by adults of the phytoplasma vector Euscelidius variegatus from flavescence dorée phytoplasma acquisition to transmission. Indeed, we demonstrate that adults can become infective as soon as 9 days from the beginning of phytoplasma acquisition. Our results support a reconsideration of the role of adults in phytoplasma epidemiology, by indicating their extended potential ability to complete the full transmission process. Abstract Phytoplasma transmission takes place by insect vectors through an Acquisition Access Period (AAP), Latency Period (LP) and Inoculation Access Period (IAP). Generally, phytoplasmas are believed to be transmitted more efficiently by nymphs because they need a long LP to reach the salivary glands before becoming infective. The transmission can start from adults as well, but in this case a long LP may exceed the insect’s lifespan. However, previous evidence has indicated that adults can undergo a shorter LP, even though little knowledge is available regarding the phytoplasma temporal dynamics during this period. Here, we investigate the minimum time required by the phytoplasma to colonize the vector midgut and salivary glands, and finally to be inoculated into a plant. We used the leafhopper Euscelidius variegatus to investigate the life cycle of flavescence dorée phytoplasma (FDP). Phytoplasma-free E. variegatus adults were left on broad beans (BBs) infected with FDP for an AAP of 7 days. Subsequently, they were individually transferred onto a healthy BB for seven different IAPs, each one lasting 24 h from day 8 to 14. Molecular analyses and fluorescence in situ hybridization were performed for FDP detection. FDP was found in the leafhopper midgut from IAP 1 with an infection rate reaching 50%, whereas in the salivary glands it was found from IAP 2 with an infection rate reaching 30%. FDP was also detected in BBs from IAP 4, with infection rates reaching 10%. Our results represent an important step to further deepen the knowledge of phytoplasma transmission and its epidemiology.
Collapse
|