1
|
Kyler H, James K. The importance of multisensory-motor learning on subsequent visual recognition. Perception 2024; 53:597-618. [PMID: 38900046 DOI: 10.1177/03010066241258967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Speed of visual object recognition is facilitated after active manual exploration of objects relative to passive visual processing alone. Manual exploration allows viewers to select important information about object structure that may facilitate recognition. Viewpoints where the objects' axis of elongation is perpendicular or parallel to the line of sight are selected more during exploration, recognized faster than other viewpoints, and afford the most information about structure when object movement is controlled by the viewer. Prior work used virtual object exploration in active and passive viewing conditions, limiting multisensory structural object information. Adding multisensory information to encoding may change accuracy of overall recognition, viewpoint selection, and viewpoint recognition. We tested whether the known active advantage for object recognition would change when real objects were studied, affording visual and haptic information. Participants interacted with 3D novel objects during manual exploration or passive viewing of another's object interactions. Object recognition was tested using several viewpoints of rendered objects. We found that manually explored objects were recognized more accurately than objects studied through passive exploration and that recognition of viewpoints differed from previous work.
Collapse
|
2
|
Wise T, Emery K, Radulescu A. Naturalistic reinforcement learning. Trends Cogn Sci 2024; 28:144-158. [PMID: 37777463 PMCID: PMC10878983 DOI: 10.1016/j.tics.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/02/2023]
Abstract
Humans possess a remarkable ability to make decisions within real-world environments that are expansive, complex, and multidimensional. Human cognitive computational neuroscience has sought to exploit reinforcement learning (RL) as a framework within which to explain human decision-making, often focusing on constrained, artificial experimental tasks. In this article, we review recent efforts that use naturalistic approaches to determine how humans make decisions in complex environments that better approximate the real world, providing a clearer picture of how humans navigate the challenges posed by real-world decisions. These studies purposely embed elements of naturalistic complexity within experimental paradigms, rather than focusing on simplification, generating insights into the processes that likely underpin humans' ability to navigate complex, multidimensional real-world environments so successfully.
Collapse
Affiliation(s)
- Toby Wise
- Department of Neuroimaging, King's College London, London, UK.
| | - Kara Emery
- Center for Data Science, New York University, New York, NY, USA
| | - Angela Radulescu
- Center for Computational Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| |
Collapse
|
3
|
Parsons TD. High-dimensional Metaverse Platforms and the Virtually Extended Self. J Cogn 2024; 7:2. [PMID: 38223229 PMCID: PMC10785999 DOI: 10.5334/joc.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 01/16/2024] Open
Abstract
The study of cognition has traditionally used low-dimensional measures and stimulus presentations that emphasize laboratory control over high-dimensional (i.e., ecologically valid) tools that reflect the activities and interactions in everyday living. Although controlled experimental presentations in laboratories have enhanced our understanding of cognition for both healthy and clinical cohorts, high dimensionality may extend reality and cognition. High-dimensional Metaverse approaches use extended reality (XR) platforms with dynamic stimulus presentations that couple humans and simulation technologies to extend cognition. The plan for this paper is as follows: The "Extending from low to high-dimensional studies of cognition" section discusses current needs for high-dimensional stimulus presentations that reflect everyday cognitive activities. In the "Algorithmic devices and digital extension of cognition" section, technologies of the extended mind are introduced with the Metaverse as a candidate cognitive process for extension. Next, in the "A neurocognitive framework for understanding technologies of the extended mind" section, a framework and model are proposed for understanding the neural correlates of human technology couplings in terms of automatic algorithmic processes (limbic-ventral striatal loop); reflective cognition (prefrontal-dorsal striatal loop); and algorithmic processing (insular cortex). The algorithmic processes of human-technology interactions can, over time, become an automated and algorithmic coupling of brain and technology. The manuscript ends with a brief summary and discussion of the ways in which the Metaverse can be used for studying how persons respond to high-dimensional stimuli in simulations that approximate real-world activities and interactions.
Collapse
Affiliation(s)
- Thomas D. Parsons
- Grace Center, Edson College, Arizona State University, Tempe, AZ, US
- Computational Neuropsychology & Simulation (CNS) Lab, Arizona State University, Tempe, AZ, US
| |
Collapse
|
4
|
Chen J, Paciocco JU, Deng Z, Culham JC. Human Neuroimaging Reveals Differences in Activation and Connectivity between Real and Pantomimed Tool Use. J Neurosci 2023; 43:7853-7867. [PMID: 37722847 PMCID: PMC10648550 DOI: 10.1523/jneurosci.0068-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
Because the sophistication of tool use is vastly enhanced in humans compared with other species, a rich understanding of its neural substrates requires neuroscientific experiments in humans. Although functional magnetic resonance imaging (fMRI) has enabled many studies of tool-related neural processing, surprisingly few studies have examined real tool use. Rather, because of the many constraints of fMRI, past research has typically used proxies such as pantomiming despite neuropsychological dissociations between pantomimed and real tool use. We compared univariate activation levels, multivariate activation patterns, and functional connectivity when participants used real tools (a plastic knife or fork) to act on a target object (scoring or poking a piece of putty) or pantomimed the same actions with similar movements and timing. During the Execute phase, we found higher activation for real versus pantomimed tool use in sensorimotor regions and the anterior supramarginal gyrus, and higher activation for pantomimed than real tool use in classic tool-selective areas. Although no regions showed significant differences in activation magnitude during the Plan phase, activation patterns differed between real versus pantomimed tool use and motor cortex showed differential functional connectivity. These results reflect important differences between real tool use, a closed-loop process constrained by real consequences, and pantomimed tool use, a symbolic gesture that requires conceptual knowledge of tools but with limited consequences. These results highlight the feasibility and added value of employing natural tool use tasks in functional imaging, inform neuropsychological dissociations, and advance our theoretical understanding of the neural substrates of natural tool use.SIGNIFICANCE STATEMENT The study of tool use offers unique insights into how the human brain synthesizes perceptual, cognitive, and sensorimotor functions to accomplish a goal. We suggest that the reliance on proxies, such as pantomiming, for real tool use has (1) overestimated the contribution of cognitive networks, because of the indirect, symbolic nature of pantomiming; and (2) underestimated the contribution of sensorimotor networks necessary for predicting and monitoring the consequences of real interactions between hand, tool, and the target object. These results enhance our theoretical understanding of the full range of human tool functions and inform our understanding of neuropsychological dissociations between real and pantomimed tool use.
Collapse
Affiliation(s)
- Juan Chen
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, and the School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, Guangdong 510631, China
| | - Joseph U Paciocco
- Neuroscience Program, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhiqing Deng
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, and the School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Jody C Culham
- Neuroscience Program, University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Psychology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Snow JC, Gomez MA, Compton MT. Human memory for real-world solid objects is not predicted by responses to image displays. J Exp Psychol Gen 2023; 152:2703-2712. [PMID: 37079829 PMCID: PMC10587360 DOI: 10.1037/xge0001387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
In experimental psychology and neuroscience, computerized image stimuli are typically used as artificial proxies for real-world objects to understand brain and behavior. Here, in a series of five experiments (n = 165), we studied human memory for objects presented as tangible solids versus computerized images. We found that recall for solids was superior to images, both immediately after learning, and after a 24-hr delay. A "realness advantage" was also evident relative to three-dimensional (3-D) stereoscopic images, and when solids were viewed monocularly, arguing against explanations based on the presence of binocular depth cues in the stimulus. Critically, memory for solids was modulated by physical distance, with superior recall for objects positioned within versus outside of observers' reach, whereas recall for images was unaffected by distance. We conclude that solids are processed quantitatively and qualitatively differently in episodic memory than are images, suggesting caution in assuming that artifice can always substitute for reality. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Michael A. Gomez
- The University of Nevada Reno, Reno, Nevada, USA
- Clovis Community College, Fresno, CA
| | | |
Collapse
|
6
|
Johnsdorf M, Kisker J, Gruber T, Schöne B. Comparing encoding mechanisms in realistic virtual reality and conventional 2D laboratory settings: Event-related potentials in a repetition suppression paradigm. Front Psychol 2023; 14:1051938. [PMID: 36777234 PMCID: PMC9912617 DOI: 10.3389/fpsyg.2023.1051938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Although the human brain is adapted to function within three-dimensional environments, conventional laboratory research commonly investigates cognitive mechanisms in a reductionist approach using two-dimensional stimuli. However, findings regarding mnemonic processes indicate that realistic experiences in Virtual Reality (VR) are stored in richer and more intertwined engrams than those obtained from the conventional laboratory. Our study aimed to further investigate the generalizability of laboratory findings and to differentiate whether the processes underlying memory formation differ between VR and the conventional laboratory already in early encoding stages. Therefore, we investigated the Repetition Suppression (RS) effect as a correlate of the earliest instance of mnemonic processes under conventional laboratory conditions and in a realistic virtual environment. Analyses of event-related potentials (ERPs) indicate that the ERP deflections at several electrode clusters were lower in VR compared to the PC condition. These results indicate an optimized distribution of cognitive resources in realistic contexts. The typical RS effect was replicated under both conditions at most electrode clusters for a late time window. Additionally, a specific RS effect was found in VR at anterior electrodes for a later time window, indicating more extensive encoding processes in VR compared to the laboratory. Specifically, electrotomographic results (VARETA) indicate multimodal integration involving a broad cortical network and higher cognitive processes during the encoding of realistic objects. Our data suggest that object perception under realistic conditions, in contrast to the conventional laboratory, requires multisensory integration involving an interconnected functional system, facilitating the formation of intertwined memory traces in realistic environments.
Collapse
|
7
|
Perceptual dissimilarity, cognitive and linguistic skills predict novel word retention, but not extension skills in Down syndrome. COGNITIVE DEVELOPMENT 2022. [DOI: 10.1016/j.cogdev.2022.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Fairchild GT, Marini F, Snow JC. Graspability Modulates the Stronger Neural Signature of Motor Preparation for Real Objects vs. Pictures. J Cogn Neurosci 2021; 33:2477-2493. [PMID: 34407193 PMCID: PMC9946154 DOI: 10.1162/jocn_a_01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The cognitive and neural bases of visual perception are typically studied using pictures rather than real-world stimuli. Unlike pictures, real objects are actionable solids that can be manipulated with the hands. Recent evidence from human brain imaging suggests that neural responses to real objects differ from responses to pictures; however, little is known about the neural mechanisms that drive these differences. Here, we tested whether brain responses to real objects versus pictures are differentially modulated by the "in-the-moment" graspability of the stimulus. In human dorsal cortex, electroencephalographic responses show a "real object advantage" in the strength and duration of mu (μ) and low beta (β) rhythm desynchronization-well-known neural signatures of visuomotor action planning. We compared desynchronization for real tools versus closely matched pictures of the same objects, when the stimuli were positioned unoccluded versus behind a large transparent barrier that prevented immediate access to the stimuli. We found that, without the barrier in place, real objects elicited stronger μ and β desynchronization compared to pictures, both during stimulus presentation and after stimulus offset, replicating previous findings. Critically, however, with the barrier in place, this real object advantage was attenuated during the period of stimulus presentation, whereas the amplification in later periods remained. These results suggest that the "real object advantage" is driven initially by immediate actionability, whereas later differences perhaps reflect other, more inherent properties of real objects. The findings showcase how the use of richer multidimensional stimuli can provide a more complete and ecologically valid understanding of object vision.
Collapse
|
9
|
Zhang Z, Zeidman P, Nelissen N, Filippini N, Diedrichsen J, Bracci S, Friston K, Rounis E. Neural Correlates of Hand-Object Congruency Effects during Action Planning. J Cogn Neurosci 2021; 33:1487-1503. [PMID: 34496373 DOI: 10.1162/jocn_a_01728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Selecting hand actions to manipulate an object is affected both by perceptual factors and by action goals. Affordances may contribute to "stimulus-response" congruency effects driven by habitual actions to an object. In previous studies, we have demonstrated an influence of the congruency between hand and object orientations on response times when reaching to turn an object, such as a cup. In this study, we investigated how the representation of hand postures triggered by planning to turn a cup was influenced by this congruency effect, in an fMRI scanning environment. Healthy participants were asked to reach and turn a real cup that was placed in front of them either in an upright orientation or upside-down. They were instructed to use a hand orientation that was either congruent or incongruent with the cup orientation. As expected, the motor responses were faster when the hand and cup orientations were congruent. There was increased activity in a network of brain regions involving object-directed actions during action planning, which included bilateral primary and extrastriate visual, medial, and superior temporal areas, as well as superior parietal, primary motor, and premotor areas in the left hemisphere. Specific activation of the dorsal premotor cortex was associated with hand-object orientation congruency during planning and prior to any action taking place. Activity in that area and its connectivity with the lateral occipito-temporal cortex increased when planning incongruent (goal-directed) actions. The increased activity in premotor areas in trials where the orientation of the hand was incongruent to that of the object suggests a role in eliciting competing representations specified by hand postures in lateral occipito-temporal cortex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elisabeth Rounis
- University of Oxford.,West Middlesex University Hospital, Isleworth
| |
Collapse
|
10
|
Snow JC, Culham JC. The Treachery of Images: How Realism Influences Brain and Behavior. Trends Cogn Sci 2021; 25:506-519. [PMID: 33775583 PMCID: PMC10149139 DOI: 10.1016/j.tics.2021.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Although the cognitive sciences aim to ultimately understand behavior and brain function in the real world, for historical and practical reasons, the field has relied heavily on artificial stimuli, typically pictures. We review a growing body of evidence that both behavior and brain function differ between image proxies and real, tangible objects. We also propose a new framework for immersive neuroscience to combine two approaches: (i) the traditional build-up approach of gradually combining simplified stimuli, tasks, and processes; and (ii) a newer tear-down approach that begins with reality and compelling simulations such as virtual reality to determine which elements critically affect behavior and brain processing.
Collapse
Affiliation(s)
- Jacqueline C Snow
- Department of Psychology, University of Nevada Reno, Reno, NV 89557, USA
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada; Brain and Mind Institute, Western Interdisciplinary Research Building, University of Western Ontario, London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
11
|
Sivakumar P, Quinlan DJ, Stubbs KM, Culham JC. Grasping performance depends upon the richness of hand feedback. Exp Brain Res 2021; 239:835-846. [PMID: 33403432 DOI: 10.1007/s00221-020-06025-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
Although visual feedback of the hand allows fast and accurate grasping actions, little is known about whether the nature of feedback of the hand affects performance. We investigated kinematics during precision grasping (with the index finger and thumb) when participants received different levels of hand feedback, with or without visual feedback of the target. Specifically, we compared performance when participants saw (1) no hand feedback; (2) only the two critical points on the index finger and thumb tips; (3) 21 points on all digit tips and hand joints; (4) 21 points connected by a "skeleton", or (5) full feedback of the hand wearing a glove. When less hand feedback was available, participants took longer to execute the movement because they allowed more time to slow the reach and close the hand. When target feedback was unavailable, participants took longer to plan the movement and reached with higher velocity. We were particularly interested in investigating maximum grip aperture (MGA), which can reflect the margin of error that participants allow to compensate for uncertainty. A trend suggested that MGA was smallest when ample feedback was available (skeleton and full hand feedback, regardless of target feedback) and when only essential information about hand and target was provided (2-point hand feedback + target feedback) but increased when non-essential points were included (21-point feedback). These results suggest that visual feedback of the hand affects grasping performance and that, while more feedback is usually beneficial, this is not necessarily always the case.
Collapse
Affiliation(s)
- Prajith Sivakumar
- Department of Biology, University of Western Ontario, London, Canada.,Brain and Mind Institute, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada
| | - Derek J Quinlan
- Brain and Mind Institute, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada.,BrainsCAN, University of Western Ontario, London, ON, Canada.,Department of Psychology, Huron University College, London, ON, Canada
| | - Kevin M Stubbs
- Brain and Mind Institute, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada.,BrainsCAN, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Jody C Culham
- Brain and Mind Institute, University of Western Ontario, Western Interdisciplinary Research Building, London, ON, Canada. .,Department of Psychology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
12
|
Freud E, Behrmann M, Snow JC. What Does Dorsal Cortex Contribute to Perception? Open Mind (Camb) 2020; 4:40-56. [PMID: 33225195 PMCID: PMC7672309 DOI: 10.1162/opmi_a_00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/20/2020] [Indexed: 01/26/2023] Open
Abstract
According to the influential "Two Visual Pathways" hypothesis, the cortical visual system is segregated into two pathways, with the ventral, occipitotemporal pathway subserving object perception, and the dorsal, occipitoparietal pathway subserving the visuomotor control of action. However, growing evidence suggests that the dorsal pathway also plays a functional role in object perception. In the current article, we present evidence that the dorsal pathway contributes uniquely to the perception of a range of visuospatial attributes that are not redundant with representations in ventral cortex. We describe how dorsal cortex is recruited automatically during perception, even when no explicit visuomotor response is required. Importantly, we propose that dorsal cortex may selectively process visual attributes that can inform the perception of potential actions on objects and environments, and we consider plausible developmental and cognitive mechanisms that might give rise to these representations. As such, we consider whether naturalistic stimuli, such as real-world solid objects, might engage dorsal cortex more so than simplified or artificial stimuli such as images that do not afford action, and how the use of suboptimal stimuli might limit our understanding of the functional contribution of dorsal cortex to visual perception.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology and the Centre for Vision Research, York University
| | - Marlene Behrmann
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University
| | | |
Collapse
|