1
|
Musikajaroen S, Polin S, Sattayaporn S, Jindata W, Saenrang W, Kidkhunthod P, Nakajima H, Butburee T, Chanlek N, Meevasana W. Photoenhanced Water Electrolysis in Separate O 2 and H 2 Cells Using Pseudocapacitive Electrodes. ACS OMEGA 2021; 6:19647-19655. [PMID: 34368552 PMCID: PMC8340381 DOI: 10.1021/acsomega.1c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Water electrolysis has received much attention in recent years as a means of sustainable H2 production. However, many challenges remain in obtaining high-purity H2 and making large-scale production cost-effective. This study provides a strategy for integrating a two-cell water electrolysis system with solar energy storage. In our proposed system, CuO-Cu(OH)2/Cu2O was used as a redox mediator between oxygen and hydrogen evolution components. The system not only overcame the gas-mixing issue but also showed high gas generation performance. The redox reaction (charge/discharge) of CuO-Cu(OH)2/Cu2O led to a significant increase (51%) in the initial rate of H2 production from 111.7 μmol h-1 cm-2 in the dark to 168.9 μmol h-1 cm-2 under solar irradiation. The effects of light on the redox reaction of CuO-Cu(OH)2/Cu2O during water electrolysis were investigated by in situ X-ray absorption and photoemission spectroscopy. These results suggest that surface oxygen vacancies are created under irradiation and play an important role in increased capacitance and gas generation. These findings provide a new path to direct storage of abundant solar energy and low-cost sustainable hydrogen production.
Collapse
Affiliation(s)
- Supansa Musikajaroen
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
- Thailand
Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Siwat Polin
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | | | - Warakorn Jindata
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Wittawat Saenrang
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
- Thailand
Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Pinit Kidkhunthod
- Synchrotron
Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Hideki Nakajima
- Synchrotron
Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Teera Butburee
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Narong Chanlek
- Synchrotron
Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Worawat Meevasana
- Research
Network NANOTEC-SUT on Advanced Nanomaterials and Characterization
and School of Physics, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
- Thailand
Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| |
Collapse
|